Legal Security for Transformations of Signed Documents
Fundamental Concepts

Zbynek Loebl
CEAG, Prague

Andreas U. Schmidt
Fraunhofer-SIT, Darmstadt

Second European PKI Workshop
The University of Kent, England
30 June - 1 July 2005
Transformations of Signed Doc’s – Application cases

• Healthcare: (E→E)
 – Anonymisation of patient records for use in clinical studies.
 – Migration between common data formats, e.g. in disease management programmes (like specified by the HL7 group)
 – Retain authenticity and attributability expressed by physicians signature!

• E-Government: (P→E, E→E)
 – Conversion of paper and electronic plans of a building application into suitable data formats for office use
 – Retain non-repudiation expressed by applicant’s/plaintiff’s signature!
 – Respect metric and colour gauging!
Transformations of Signed Doc’s – Application cases

• **Notaries**: (P→P, future: P→E E→E)
 - *Attestation* of the identity of contents for two documents after conversion between data formats and/or media types
 - *Retain authenticity and attributability expressed by original signature(s)!*
 - *Raise the ‘level of trustworthiness’ through attestation by an authorised person or institution.*

• **Long-term archiving** (E→E)
 - *Convert* to long-term secure data formats
 - *Re-sign documents with a scalable method*
Principal Legal Issues

• Development of adequate legal assumptions that a certain transformation will be considered secure unless contrary is proven;
• Legal assumptions must relate to the whole transformation process, not just one of its stages—an electronic document;
• Currently, we can see preparation of new legislation (e.g. e-invoicing) but lack of business applications;
• Widespread business application will need development of secure e-transformation and e-archiving certification service provider
Problem Statement

Application scenarios are diversified - security requirements vary

- **Common problems:**
 - Original signatures break
 - Originals are no longer available or readable
 - Legal regulations come into play and
 - entail special requirements on transformations

- **Common goal:**
 Ensure that documents can be used in their application contexts in the desired way, i.e., have the necessary level of trustworthiness.

- **First step:** A basic set of concepts and notions
 - to characterise secure transformations in a context- and technology-neutral way
 - Clearly separate application context from transformation system
Basic Notions and Concepts

What characterises secure Document transformations?

Mnemonic:

A secure transformation is ensured through the trust-worthiness of faithfulness for a given purpose.

In turn, the purpose is the conversion between source and Target with their respective purports.
Common Requirements for Secure Transformations

- **Reach the required faithfulness**
 - Determine the purpose of the transformation
 - Apply a faithful conversion method to the content

- **Trustworthiness**
 - Record precisely who did what in an *ex post* provable way, i.e., keep a transformation protocol with the target
 - Check the results (target contents and protocols)
 - Make the results attributable to a responsible party by (electronic) signatures

- Transformation is a step-wise process leading from source to target document
Processual Analysis of Secure Transformations

- Source Document
 - Content
 - Signature(s)
- Classification
 - Rule-Set
- Pre-Processing

- Conversion
 - Signature Extraction

- Conversion Assay
 - Transformation Assay
 - Transformation Assay Data
 - Transformation Assay Data

- Target Document
 - Converted Content
 - Rule-Set
 - Classification Data
 - Signature Data
 - Conversion Protocol
 - Conversion Assay Data
 - Transformation Assay Data
 - Transformation Seal

- Sealing
Correct Classification is Central!

- Depending on app. context and transformation’s purpose
- Source doc is classified at assessed properties like
 - (contextual) Document type (patient record, building plan)
 - Document format (Word, PDF, TIFF, XML, …)
- Classification result and purpose determine
 - Which properties are relevant for faithfulness
 - How faithfulness is to be reached and audited
 - How and by whom the results are to be attested to ensure trustworthiness

➔ A unique rule-set that governs all subsequent steps
➔ A transformation record that carries all relevant information (rule-set, doc at intermediate stages, protocols, etc.)
Rule-Sets

• Rule-Sets are a flexible generic concept comprising
 – Technical rules, e.g., conversion components, algorithms and parameters
 – Security rules for the transformation system, its operation and process organisation
 – Format rules for source and target, e.g.,
 • reject Word docs with comments or review marks
 • Target must validate against specified (XML) schema
 – Contextual rules
 • Require the names of two signatories in the target (a contract), agreeing with the signer names in the original’s signatures
 – Policies for signature verification, extraction, and creation (advanced or qualified sigs, OCSP requests, …)
 – Limits for automation, e.g., necessity for human inspection with a trusted display component at a certain stage
Rule-Set Instantiation and Profiling

• Rule-Sets are as such too generic to be very useful
 Current work aims at
 – A *generic data structure* for rule-sets, structured along the
transformation phases, and
 – Interface points which separate *automatable* rules from those which
 are only *human-understandable*
 – Means to *refer* to resources (standards, parameters), e.g., by OIDs
 – Common hooks to link *profiles* which are *application specific* and
 respect the *legal domain* (national rules, official vs. private use, etc.)
 – Make examples:
 • *Automated* conversion of XML patient records
 • *Attestation and legalisation* (by notaries or public officials)
 according to German law
 • *Authorised translations*
Transformation Seal

• The Transformation Seal is the central concept for the creation of the target document
 – Carries all data (from the trf. record) necessary for a forensic auditing of the transformation and its results and thus enables \textit{probative force}
 – Carries an electronic signature over said data and target contents, to
 – Secure the \textit{integrity} of the target document
 – \textit{Attest} the correctness of transformation process and result
 – \textit{Attribute} this attestation to a \textit{responsible, authorised} party

• Profiling and Instantiation follows the same paths as for Rule-Sets
Legalisation/Official Certification

• Scenario based on German law (§ 33 VwVfG)
 – An authority issues a doc to a citizen using an E→E trf. (e.g. excerpts from public record; purport ‘for presentation at authority XY’)
 – Source carries qualified signature and is classified by type
 – Signature extraction validates signature, records sig time, cert holder and cert data, failure is stop criterion
 – Seal must carry an official’s qualified signature and additionally
 • Denotation of source doc (e.g. ‘family register’)
 • Signature data (not further specified by law)
 • Time and location of certification
 • Name of the attesting public servant
 • Denotation of the issuing authority
 • An express statement of agreement of source and target contents
 – Signing can be partially automated by multi-sig creation
An attestation/legalisation/official certification of paper docs carries two authentication characteristics

- A signature authenticates the **attestor as a person**
- A seal authenticates **his/her role** as one **authorised** to carry out the attestation

A **single** (qualified) signature is insufficient to convey **both** assurances. A **second**, cryptographically secured item will generally be necessary.

(Remarkably, German legislation currently ignores the issue)
Attestor Authorisation by Attribute Certificates

- ACs are the self-evident solution approach but bear problems and bring up new tasks
 - Define of a common set of attester roles
 - Build a registry for the authorities for the corresponding roles, i.e., the entities which exert authority over issuance and revocation of the ACs
 - Build a (central?, de-centralised?) cert. Infrastructure
 - This infrastructure might have to bear special longevity requirements for certificate data
 - An additional cost-factor for E-Gov and E-notaries

Thank You for Your attention!