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Abstract

This thesis presents a concept to achieve non-repudiation for natural lan-
guage conversations by electronically signing continuous, packet-based, dig-
ital voice communication (VoIP).
Signing a VoIP-based conversation means to protect the integrity and authen-
ticity of the bidirectional data stream and its temporal sequence which to-
gether establish the security context of the communication. The solution is
based on chains of hashes and continuously chained electronic signatures.
The protection is provided continuously during the ongoing conversations,
they are not processed at once like traditional digital documents which could
be trivially signed.
A possible implementation and necessary protocols are described to apply
these concepts to SIP/RTP-based VoIP-communication. This provides a high
level of inherent security and enables PKI-based non-reputable signatures
over voice as true declarations of will, without additional witnesses and in
principle between unacquainted speakers.
As a demonstrator for these concepts, an efficient VoIP-archive securing the
integrity of SIP-based two-party conversations was implemented.

Keywords

Electronic signature; non-repudiation; voice over IP; interval signature; cryp-
tographic chaining; natural-language communication
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Introduction

2.1 Motivation and scope1

The latest successful example for the ever ongoing convergence of informa-
tion technologies is internet based telephony, transporting voice over the in-
ternet protocol (VoIP). Analysts estimate an annual growth rate in a range of
20% to 45%, expecting that VoIP will carry more than fifty percent of business
voice traffic (UK) in a few years [2]. The success of VoIP will not be limi-
ted to cable networks: Convergent speech and data transmission will affect
next generation mobile networks as well. The new technology raises, how-
ever, some security issues. For eavesdropping traditional, switched analogue
or digital phone calls, an attacker has to get physical access to the transport
medium. While he might have a harder time decoding the more complex pro-
tocols of IP networks and DSL-lines after dredging landlines of home-users,
digital networks are generally more vulnerable to attacks, especially when
used together with insecure wireless networks. Efforts to add security fea-
tures to VoIP products are currently infrequently deployed, though proposals
exist for privacy protection. Protocols like SRTP [3] can provide end-to-end
security to phone calls, making them independent from the security of the
transport medium and the communication provider [4]. Secure VoIP proto-
cols, using cryptographic protection of a call, would even be at an advantage
compared to traditional telephony systems. While the problem of eavesdrop-
ping is solved for digital networks - at least in theory -, no efforts to add
non-repudiation can be found.
On the other hand, voice conversations provide inherent evidentiary value as
they allow forensic evaluation and analysis of the contained biometric data,
e.g., as an independent means of speaker identification [5, 6]. Methods for
the latter are advanced [7] and provide for the recorded voice communication
1 Parts of this section were taken from our paper submitted for [1]
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a rather high probative force, for example in a court of law. In comparison
to other digital media, e.g., text documents, specific features of voice com-
munication can be viewed as contributing to security. The medium of com-
munication here consists of a linearly time-based full duplex channel enabling
inter- and transactivity [8]. In particular, interactivity enables partners to make
further enquiries in case of insufficient understanding. Furthermore, digital
voice communication will offer a rather high reliability and quality of ser-
vice, leading generally to a higher understandability of VoIP communication
in comparison with its analogue predecessors [9, 10]. The mentioned proper-
ties mitigate to some extent problems to which digital documents are usually
prone, e.g., misinterpretations due to misrepresentation, lack of uniqueness of
presentation, and inadvertent or malicious hiding of content.
Therefore, departed from the basic security aspects of VoIP communication,
conversations will here be viewed on a transactional level between caller
and callee. The top-level category of protection targets considered is non-
repudiation of conversations. Three tasks of ascending complexity are ad-
dressed in this work:

1) Protection of the integrity of voice conversations. Protecting a (recorded,
digital) voice conversation from falsification and tampering with is differ-
ent from protecting the integrity of other digital data due to the relevance
of the temporal context. In particular, packet ordering and loss have to be
considered properly, and a creation time must be assigned to each conver-
sation.

2) Authentication of speakers. An initial authentication of caller and callee
together with the inherent biometric authenticity of voice is the basic ap-
proach to this problem. While it could be resolved in principle solely on
the transport layer, it is advantageous to combine it with the methods of 1),
to obtain proof that a (recorded) conversation was carried out completely
from the authenticated devices and not taken over by an attacker. It has to
be noted that each authentication of a speaker requires trust in the devices
used by the communication parties.

3) Electronic signatures over voice conversations. Building on 1) and 2) it is
possible to achieve, for voice conversations, the level of non-repudiation
provided by electronic signatures over digital documents, i.e., an expres-
sion of will. For this, the aforementioned tasks must be complemented by
a proof of possession of a trustworthy signature token and device, and the
intention to sign.

Theoretical and technological concepts for each of the tasks 1) – 3) are pre-
sented and their realisation is described in a demonstration environment for
secure archiving of calls. The existing VoIP infrastructures are largely un-
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affected by the concepts through a seamless and efficient integration in the
SIP [11] and RTP [12] protocols. On the other hand, the three tasks pose in-
creasing technical requirements on the part of the involved devices.
Task 1) can be resolved in a stand-alone way, without any change in devices
or transport methods. The solution concept rests on cryptographic secrets cre-
ated at the initiation of a call and their perpetuation throughout the call by a
cryptographic chaining method. As a key issue, stability, quality of service,
and necessary fragility to prevent attacks must be balanced with each other.
The main application of this concept is a secured archive for VoIP conversa-
tions which yields tamper-resilience and in consequence evidentiary value by
far exceeding that of traditional tape archives. On the other hand, tasks 2) and
3) need additions on the used devices ranging from the inclusion of authen-
tication software and the roll-out of pertinent data, to the fulfilment of high
security requirements for signature terminals.
The combined benefits of the technology developed here amount to a new
paradigm for non-repudiation of digital data. The combination of integrity of
recorded conversations, security about the identity of dialogue partners, and
finally expressions of will embodied in signatures enables legally binding ver-
bal contracts between unacquainted persons.
A trivial way of providing signed conversations would be be achieved by
recording the conversation and afterwards replay the recording to the partici-
pants. Such a solution raises various problems as the recording is unprotected
during the recording and the replay has to be protected as well. The practical-
ity of such an approach is also doubtful, because it requires at least twice as
much time. By contrast, the presented concepts allow to use natural, fully in-
teractive, traditional conversations to create legally binding verbal contracts.
While the German law already provides this for verbal agreement, here proof
is provided even without additional witnesses.

2.2 Scenarios

2.2.1 Secure Self-Signed Archive for voice conversations

In security sensitive application domains like telephony brokerage, calls need
to be archived to ensure non-repudiation. A solution based on this is shown
in Figure 2.1 and was implemented as a demonstrator together with a verifi-
cation and playback-tool.
In this scenario, party A archives the call and signs it using his certificate or
the certificate of the archiving-software, which is realised as proxy-server. A
timestamping-authority secures the exact start of the call. In contrast to tra-
ditional long-term-archives, this solution is based on streaming and securing
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A B

          Proxy-Server for
          archiving of calls

    Timestamping Authority
Internet and SIP-

proxies or traditional 
telephone system with 

gateways

Archive

Fig. 2.1: Self signed archive for voice conversations

ongoing conversations. It uses the timestamp to pinpoint the exact starting-
time of a conversation and not the moment of archiving.
Note that the archive could be placed at the site of either of the parties or any-
where in between, as long as at least some part of the communication is based
on SIP/RTP. It could be under the control of any party including third parties
or installed centrally in a corporate environment.

2.2.2 Signing interactive, duplex voice conversations between two
parties

Proxy-Server for 
signing of calls

A B

          Proxy-Server for
          signing of calls

    Timestamping Authority Internet and SIP-proxies 
supporting the transport of 

signature data

Archive

A posseses certificate 
and private key

Fig. 2.2: Signing scenario: A signs the call, B archives it as proof

The goal of this scenario is to achieve legally binding contracts over VoIP
without witnesses. Figure 2.2 shows a bidirectional interactive conversation
between two parties A and B. A wants to sign the conversation and release it to
B as a declaration of his will, i.e. a commitment in the sense of a signed offer.
By signing the call A also expresses his explicit consent to the archiving of the
call. In effect, A wants or is required to make sure that the conversation be-
tween A und B provides non-repudiation, in any case he expresses the explicit
will to make non-reputable statements or stipulations in the call. In order to
do that, A possesses a digital certificate for a public/private key pair. B and
any third party to whom the signed conversation is presented as evidence, are
assumed to be able to verify the certificate of A and any data signed with the
associated private key, e.g. by using a PKI structure in the background.
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A signs the complete call including both channels comprising everything that
B says. B stores the signed conversation in a secure archive of his choice.
B can later proof to third parties or court that the call happened and had the
claimed contents. If B fails to store the conversation in an archive or deletes
it, A can deny that the call ever happened. An important security goal of A
and B is that A signs exactly what was heart by both parties.

2.3 Thesis organisation

The preceding section presented and motivated the two main scenarios for the
technique. Chapter 3 presents technical details and protocols of VoIP based
on the SIP-standard. It covers all important aspects and side-aspects that led
to problems for the implementation of the demonstrator or are otherwise im-
portant. Chapter 4 is the main part of this thesis: Here the requirements for
both scenarios are analysed and solutions are described. This finally leads
to a secure data format for signed calls and a protocol to carry out signed
conversations as described in the signing scenario. From the general signing
protocol chapter 5 leads to the technical implementation for SIP/RTP. Here
different ways of incorporating signatures in the SIP and RTP protocols are
discussed and assessed. Chapter 6 explains and presents the software that
was developed for this thesis: A flexible SIP-proxy to manipulate calls with
a pluggable complete implementation of the self-signed-archive scenario, a
tool to check and play signed calls and a statistic tools to measure packet loss.
Chapter 7 goes into technical details how this was implemented and describes
what every class does. The last chapter (Chapter 8) finally presents a vast
field of future research- and implementation ideas related to the presented
concepts.

2.4 Related work

Most basic security requirements of VoIP are perfectly well handled by the
SRTP standard [3]. It is discussed in section 3.4 and provides basic transport
integrity, confidentiality, replay-protection and transport authentication. But
because it is based on symmetric algorithms, i.e. HMACs, it does not provide
non-repudiation. The partner knows the HMAC-key for verification and thus
can easily create HMAC-keys at any later point in time. Therefore recorded
SRTP-packets provide no evidentiary value that the recorded conversations
was unaltered by anyone but the speaker. Also protection of the exact start-
time e.g. through timestamps is not provided.
It is currently not clearly specified how the symmetric keys of SRTP are to be
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managed between both parties because several standards exist. But if they are
embedded in the SDP-body of a SIP-INVITE-call, they can be signed using S-
MIME. While S-MIME is the method of choice for non-repudiation of email-
messages and attachments (documents), it cannot provide this for SRTP- con-
versations as the protected data only includes temporary IP-addresses, port-
numbers and the symmetric key known to both parties.
Related work on securing the integrity of streamed data by signatures is
scarce. The authors of [13] describe a method for stream signatures for broad-
cast media, where the presented methods in this thesis are concerned with
interactive, duplex conversation. In [14, 15] a method to transport authen-
tication information employing watermarks and steganography is presented.
Digital signatures are not explicitly used and achievable data rates seem low.
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Basic principles of packet based voice
communication

This chapter will present the basic principles and protocols of VoIP consider-
ing SIP and RTP as example. Almost all explained aspects are necessary to
understand the supplied source code for the demonstrator, where parsers for
these protocols have been implemented.
First the Session Initiation Protocol (SIP) is discussed. SIP is a powerful open
protocol for initiation, modification and termination of any kind of interactive
user session. Here its purpose is to

• register a SIP-phone at the provider, informing him of its network address.
• initiate calls and signal incoming calls using the concept of dialogues.
• (optionally) provide presence information and enable clients to subscribe

to events.
• (optionally) enable instant messaging.
• (optionally) transport events during the call like DTMF-digits, but this can

also be transported in-band with the audio data [16].

Its older and much more complicated rival is the H232-protocol which is not
in the scope of this work, but similar enough to apply the main concepts any-
way.
Both SIP and H232 use the same protocol and codecs for the actual trans-
portation of the voice, namely RTP, the real-time transport protocol which
itself is based on UDP.
In order to transport real-time conversations over packet based networks, the
audio input first needs to be digitized by sampling and quantization. Then it is
chopped up into packets and encoded into bytes using a codec. After that, the
packets can be optionally encrypted using the SRTP-protocol or VPN tech-
nology like IPSEC embedded into the network stack and are send out using
the network.
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3.1 SIP - The Session Initiation Protocol

SIP is specified by the IETF in RFC 3261 [11] and is a general protocol for
establishing multimedia sessions. It is not restricted to VoIP-calls, but this is
the prevalent use today.
SIP is a text-based, open and extensible protocol based on well established
internet concepts like URLs. It is very similar to HTTP and uses MIME and
SMIME from internet emails to optionally transport some kind of message-
body with a specified MIME content-type. Here the next important VoIP
sub-protocol comes into play: SDP, the session description protocol defined
in RFC2327 [17], which describes codecs, parameters and port numbers of
the RTP-stream used to actually transport the audio stream. If SIP creates a
session and transports a SDP-message body, a multimedia conversation over
RTP is established.
SIP is usually used on top of the UDP-protocol and it’s well known port num-
ber is 5060. It can also be used with TCP port 5060 and although support
for this is mandatory by RFC 3261, it is not widely deployed among VoIP-
operators today. For transport security SIP supports TLS over port 5061, but
this only secures the signaling and session establishment, not the actual audio
data.

3.1.1 Request and response types

Similar to HTTP where requests can be of type GET, PUT, POST, etc., SIP-
requests contain a method to execute. Some are listed in table 3.1
For every SIP-request the client answers with a SIP-response. This applies to
all requests with the sole exception of ACK. A response message differs from
a request in that its first line contains a response code that is very similar to
HTTP-responses. Common values are listed in table 3.2

3.1.2 SIP trapezoid and call setup

Figure 3.1 shows the typical situation when a SIP based VoIP-call is made
between A and B using the infrastructure of a VoIP-provider. A calls B and
after some time B terminates the call.
This call is not carried out directly between two parties. Making direct, proxy-
less calls is possible, but the callee would need to have fixed IP-addresses or
at least a specific DNS-address. Further the caller’s address book would have
to include the direct IP-addresses or host-names of his contacts in addition
to their usernames. Also such a setup would strongly interfere with lawful
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Method Description
REGISTER Register or deregister clients with a presence server so that it knows

who is online and at which IP-address they are to be found.
SUBSCRIBE Subscribe to events like message wait indicators. This SIP-extension

is defined in RFC 3265 [18].
NOTIFY Notify about events that have been subscribed with SUBSCRIBE.
MESSAGE Send instant message/text message. This SIP-extension is defined in

RFC 3428 [19].
INVITE Start a session (see Figure 3.1 for how this is used). Because starting

a session usually involves a ringing phone that needs to be picked up
by the user, the process of establishing a session itself is a dialogue.
Dialogue-requests can receive multiple responses and are acknowl-
edged with a final ACK.

CANCEL Cancel an ongoing INVITE request before the session is established.
ACK Acknowledges all dialogue-related responses thus making dialogues

a three way handshake.
BYE Terminates an session started with INVITE.
INFO Used to carry session related control information. This is sometimes

used to tranport DTMF dial tones. This SIP-extension is defined in
RFC 2976 [20].

Tab. 3.1: SIP methods

interception and any kind of regulation from a SIP-provider.
The proxy on the left can be thought as the outgoing proxy of A, respon-
sible for locating B. Therefore it analyzes the URL that A is calling. The
host-portion of B’s URL is handled by B’s proxy, so A’s proxy forwards the
INVITE-request to B’s proxy. Because B registered with his proxy server
as soon as his phone had network connectivity, B’s proxy will always know
where to actually find B and which network address and port-number B uses.
We can see that A’s outgoing proxy will refuse to make calls without previ-
ous authentication. We also see that every response related to the process of
establishing of a session has an additional ACK-message.
Another important detail is that the last ACK-message of the session initiation
and the session termination bypass both proxy-servers and are send directly
between A and B. At this point in time A already knows the specific contact
(and network IP-address) of B and thus there is no need to use the proxies.
This behavior is highly unfavorable for the implementation of a proxy in this
thesis, but the Record-Route-Headers will solve this.
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Response-Code Meaning Comments
1xx Provisional, searching, ringing, queuing etc.
100 Trying Is sent regularly after INVITE to

indicate that a proxy is contacting
the next hop or the phone.

180 Ringing Is sent regularly after INVITE to
indicate that the user is notified,
e.g. by a ringing phone.

2xx Success
3xx Redirection, forwarding
301 Moved Permanently User has been assigned a new

phone number.
302 Moved Temporarily Call has been temporarily redi-

rected.
4xx Request failure (client mistakes)
400 Bad Request
401 Unauthorized Responses like this contain a chal-

lenge so that the next request can
use it for authentication. This
is usually used for REGISTER-
requests.

404 Not found Call-party or subscribed event
doesn’t exist.

407 Proxy Authentication Required The proxy needs authentication.
This response also contains a chal-
lenge. This is usually encoun-
tered for INVITE-requests to avoid
spoofing of bills.

486 Busy Here The called party is already having a
conversation.

5xx Server failures
6xx Global failure

Tab. 3.2: Important SIP Response Codes

3.1.3 Important headers and how do proxies work?

By means of Figure 3.2 some headers that are important for the implementa-
tion are discussed:

From The SIP-URL of the caller.
To The SIP-URL of the callee. From and To will not be swapped

for SIP-responses to SIP-requests.
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A B

Proxy Proxy

INVITE

INVITE + Nonce

401 Unauthorized

INVITE

INVITE

100 Trying

180 Ringing

180 Ringing

200 OK

200 OK

200 OK

180 Ringing

180 Ringing

180 Ringing

180 Ringing

100 Trying

ACK

OK

BYE

Ongoing call: RTP, RTCP, SIP-INFO

100 Trying

100 Trying

ACK

Fig. 3.1: Sequence diagram of a complete SIP-VoIP-call. As there
is indirect communication between party A and B using
the proxy servers as well as direct communication for
ACK/BYE/RTP, this is also called “the SIP trapezoid”.

Contact SIP-URL that represents a direct route to the party that sends
this header. This is used for the last ACK in Figure 3.1 which
bypasses the proxies. It is also used in REGISTER-SIP-
requests.

CSeq Contains an increasing sequence number for every request.
Via For a request the sender and every proxy server on the way

stores its contact information in the form of a SIP-URI as the
top-most VIA-header line.
When the final receiver constructs his answer, he will copy
all Via-headers but the first into the response and send it to
the topmost VIA-header. For a response every intermediate
proxy reads the topmost line, removes it and forwards the re-
maining packet to this new destination.
The VIA-headers ensure that every SIP-response goes ex-
actly the same way backwards as the SIP-request was send,
so that every proxy sees the answer.

Record-Route If a proxy wants to stay in the path and not be bypassed as
seen in Figure 3.1, he can put his SIP-URI/contact data at
the topmost position. This does not affect the processing of
VIA-headers, but comes into effect when the next resulting
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INVITE sip:496123456789@84.178.139.124:5070 SIP/2.0
Record-Route: <sip:212.227.15.225;ftag=1168841412;lr=on>
Record-Route: <sip:+496123456789@217.188.44.231;ftag=1168841412;lr=on>
Via: SIP/2.0/UDP 212.227.15.197
Via: SIP/2.0/UDP 212.227.15.225
Via: SIP/2.0/UDP 212.227.15.197
Via: SIP/2.0/UDP 217.188.44.231
Via: SIP/2.0/UDP 1und1-1.sip.mgc.voip.telefonica.de:5060
From: +491793123456 <sip:+491793123456@1und1-1.sip.mgc.voip.telefonica.de;user=phone>
To: +496123456789 <sip:+496123456789@1und1.interconnect.sip.voip.telefonica.de;user=phone>
Call-ID: 7dbde21a-6a92b0f7-73ae04b2-b982@subscriber1.interconnect.mgc.voip.telefonica.de
CSeq: 1 INVITE
Supported: timer
Session-Expires: 1800
Min-SE: 1800
Contact: <sip:+491793123456@1und1-1.sip.mgc.voip.telefonica.de:5060>
Allow: INVITE,ACK,PRACK,SUBSCRIBE,BYE,CANCEL,NOTIFY,INFO,REFER,UPDATE
Max-Forwards: 6
Content-Type: application/sdp
Content-Length: 618

v=0
o=- 1710955 0 IN IP4 62.53.226.3
s=Cisco SDP 0
c=IN IP4 62.53.226.3
t=0 0
m=audio 18324 RTP/AVP 8 0 99 102 2 103 4 104 105 106 107 18 0 125 101
a=rtpmap:99 G726-16/8000
a=rtpmap:102 G726-24/8000
a=rtpmap:103 G7231-H/8000
a=rtpmap:104 G7231-L/8000
a=rtpmap:105 G729b/8000
a=rtpmap:106 G7231a-H/8000
a=rtpmap:107 G7231a-L/8000
a=rtpmap:125 GnX64/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15

Fig. 3.2: Complete content of a SIP-INVITE-request for initiating a
call using the provider GMX from United Internet. Only tags
and branches parameters were stripped from URLs and phone
numbers were anonymized. In the lower part the SDP-body
can be seen which defines codecs and port 18324 for the RTP-
stream.

request is created (e.g. ACK-packets for a dialogue initiating
a session or BYE-requests to end a session).

Max-Forwards Every proxy has to decrement this field, so that loops can be
detected (similar to limiting the amount of Received-headers
in SMTP-mails).

Content-Type SIP-requests and -responses can contain message bodies.
This could be instant text chat messages, pictures or –in
the case of VoIP calls– SDP-data which is used to negotiate
codecs, parameters and RTP-port-numbers.

Content-Length If a body is present, this field should contain its length,
so that several SIP-messages can be send consecutively and
split by the receiver if SIP is used over TCP.

Call-ID This uniquely identifies separate calls because multiple calls
can happen at the same time.



14 3 Basic principles of packet based voice communication

3.2 SDP - the Session Description Protocol
For VoIP-calls the body of a SIP-INVITE-request usually contains SDP-data
to establish the call that is transported through RTP-streams. This includes
RTP-port-numbers and codec-offerings for one or more audio- and video-
streams. The response (e.g. the “200 OK”-response in Figure 3.1) contains
the RTP-ports from the called partner and a list of the codecs he understands.
Codecs are mapped to the 127 possible RTP-payload-numbers seen in sec-
tion 3.3.2. Thus SDP performs a two-way handshake.
An example of SDP can be seen in Figure 3.2 below the blank line. SDP is
a text-based format with fixed syntax and little variations. SDP is thoroughly
explained in RFC 2327 [17] and contains many field with no use in the con-
text of SIP like the email-address of the initiator. Some important fields are
described in the following:
The line starting with “o=” describes the owner/initiator of the session and
contains the IP-address of the RTP-endpoint, which could even be another
computer or process and not the one where SIP-signaling is handled. The IP-
address is repeated in the “c=”-line. The line
m=audio 18324 RTP/AVP 8 0 99 102 2 103 4 104 105 106 107 18 0 125 101

is the most interesting one: Every time a line starts with “m=” this marks
another stream like e.g. an additional video stream. After that there is the
type of stream: audio, video or application. Next comes the port-
number and the protocol (either RTP/AVP or UDP). The remaining numbers
are a list of possible RTP-payloads ordered by priority. RFC 3551 [21] de-
fines the static range from 0–95. For each specified payload type, it states
the used codec, the frequency and the number of channels. The remaining
payload numbers 96–127 leave room for extensions and dynamic negotation
of codecs and parameters. This is done through the “rtpmap”-attribute:
Lines starting with “a=” are used to provide additional attributes to the last
stream defined with “m=”. “rtpmap” is used to define a mapping of a
payload-types to a codec, the number of channels and the frequency for the
dynamic range of payloads. “fmtp” provides yet again additional details for
a negotiated payload.
A SDP-line starting with “k=” (not shown here) would be a reserved way to
transport a cryptographic master-key for the use with SRTP.

3.3 RTP - the Real-time Transport Protocol
3.3.1 Packet loss and jitter

RTP is specified by the IETF in RFC 3550 [12] and is a lightweight protocol
above UDP that –unlike UDP– allows for ordering of the received packets
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and provides timestamps for e.g. measurement of jitter. It also allows to de-
tect packet loss, but –unlike TCP– there are no mechanisms to retransmit lost
packets. Doing so would be impractical for interactive voice data, because the
retransmit-timeouts of TCP are very large and the time needed for acknowl-
edgments and retransmission at least triples the maximum latency of a packet.
The receiver would need to stop playback for some time resulting in massive
stutter or provide a large playout buffer resulting in forbidding high latency.
Overall the latency of interactive voice needs to be minimized and should be
kept below 150ms, according to the ITU-T document G.114 [22]. Otherwise
the illusion of talking at the same time would be lost. The latency is not only
the result of the pure network latency, but also from the needed time to process
network packets and audio data and because of another important characteris-
tics named jitter: Jitter is the variance in the latency of transmitted packets. A
jitter buffer needs to increase the overall latency by storing/buffering received
packets for a short time until all packets have arrived, maybe in another order
than the sent. Packets arriving too late cannot be considered and are dropped.
Therefore the size of the jitter buffer is a tradeoff between packet loss and
increased latency.

3.3.2 Format of RTP-packets

15

V=2 P X # CCRCs M Payload Type Sequence number

Timestamp

Synchronisation Source (SSRC)

(optional/multiple) Contributing Source (CSRC)

optional: Header-Extensions (only one)

# Bytes for padding

Payload

Padding

Padding

optional: MKI (Master Key Identifier for Re-Keying)

Recommended: Authentification tag

0 31

0

4

8

12

16

24

Encrypted when 
using SRTP

Authentificated using 
HMAC when using SRTP

Only present with 
SRTP

Bit

Fig. 3.3: Format of RTP- and SRTP-packets.

In Figure 3.3 the format of a RTP-packets is shown. The contributing source
IDs and the synchronization source ID are not discussed. They are not impor-
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tant for two-party VoIP-calls and are mainly used for broadcasts where RTP
was originally developed for. Important fields are:

V Version number: Must have the value 2.
P Padding-Bit: If this bit is set, then the last byte is the amount

of padding, otherwise no padding is present.
X Extension-Bit: This bit indicates whether an extension is

present.
M Marker-Bit: The meaning is defined by the codec or the pro-

file, usually it means that the stream continues after silence
suppression.

Payload Type This value from 0 to 127 indicates the used codec and its pa-
rameters. Payload types 0–95 are defined in RFC 1890 [21],
while the remaining range from 96-127 is dynamically nego-
tiated, usually through the SDP-protocol (see section 3.2)

Sequence Number This is the sequence number of the packet. Every new
packet increments this number by one. This value is rather
short with 16 Bit and therefore wraps around after 65535.
The absolute, long sequence number can be reconstructed
from temporal context.
Note that this value does not have to start with 0. It is even
recommended to start with a random number to support sym-
metric encryption and mitigate known plaintext attacks. This
is recommended not only if SRTP is used, but in any case
because the VoIP-phone might not be aware of e.g. IPSEC-
based VPNs which could also benefit from reduced payload-
predictability.

Timestamp This field provides a timestamp based on a regular time
source for every packet. The value is not concerned at all
by timezone and is not synchronous between different par-
ties. Instead it is also recommended to start with a random
value to support encryption. Also like sequence numbers,
the 32-Bit values for timestamps can wrap around for long
enough calls. It increases by the clock value as seen in the
SDP-body of Figure 3.2, which is usually identical to the
sampling rate. A common value is 8000 Hz, so that the time-
stamp increases by 8000 every second and by one for every
sample. For PCMU and PCMA (the G.711-codec) it even
increases by the length of the payload so that it could almost
be used like a stream position.

Header Extension If the X-bit is set, then the first 16 Bit of the Header Ex-
tension contain a code for the type of extension and then 16
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Bit specify the amount of DWORDs that follow this exten-
sion header. Only one extension is supported per RTP-packet
and they are reserved for experiments. If an extension be-
came official, a new version of RTP would be released.

Padding Only present if the P-bit is set. Padding is not really needed
for plain UDP-based RTP, except if SRTP-encryption is used
and mandates a certain block cipher size. The use of only
one header-bit to express that no padding is needed provides
a very efficient way avoiding unnecessary overhead through
unneeded padding.

Please note that some codecs or phones support silence suppression, so
that they don’t have to send RTP-packets if nobody talks. In this case the
timestamp-values are incremented as if packets were send, so there are gaps
between received packets. The sequence numbers will not show gaps, be-
cause they count sent packets. So the sequence numbers can always be used
to determine packet loss.

3.4 SRTP - Secure RTP

SRTP demands a short discussion in this thesis as it is a well established
way to provide the security-goals integrity, confidentiality and authentication.
However, SRTP does not provide non-repudiation. SRTP also does not use
public key cryptography.
The format of a SRTP-packet was already shown in Figure 3.3 as it is very
similar to RTP. Security keys and parameters are handled out of band and
RTP already handles padding well. To support intelligent network devices
and advanced routing and Qos, only the gray shaded parts, which is payload
and padding, are encrypted with a symmetric algorithm. Optionally –though
recommended– the whole packet is authenticated using a HMAC which is
appended to the RTP-packet. A master key identifier supports re-keying. Note
that HMACs are not suitable for providing non-repudiation as they are based
on shared secrets.
The SRTP-standard in RFC 3711 [3] also describes how to derive IVs from
the RTP-header and how to derive key material for symmetric encryption and
authentication from a master key. The master key might be transported using
the k-value of SDP (see section 3.2), but there a lots of ways of transporting
it, e.g. SDP security description [23] or MIKEY [24].
The SRTP-standard also describes an algorithm for replay detection based on
a sliding window of at least 32 Bit. Duplicate packets are to be dropped and
counted.
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3.5 Audio codecs and packet loss concealment

The RTP-payload itself results from applying a codec and its parameters to
a piece of audio with a specific length, e.g. 20ms. There are codecs like
G.711 that handle each such piece independently, e.g. by simply encoding it.
Other codecs like Speex, GSM and ILBC are more complicated and based on
linear predictive-coding (LPC). In general they try to encode parameters to
reconstruct speech instead of storing the samples themself. This needs much
less bandwidth.
The codec G.711 is explained in more detail, not only because it is simple
to implement, but mainly because it is widely used: It is the ISDN-codec
used in the normal telephone system and can be processed by VoIP-gateways
without additional conversion or degradion of quality. It is a waveform codec
which directly encodes the digitized samples, which are then transmitted as
packets. It is based on the PCM (pulse code modulation) method and simply
uses a logarithmic scale to encode the dynamic range of voice more efficiently
and provide a better signal-to-distortion ratio than a linear quantization would
provide.
In RTP it is used in two variants: Static payload type 0 (PCMU) is the µ-
law[25]-variant shown in Equation 3.2 which is used in America and Japan.

F (x) = sgn(x)

{
87.7|x|

1+ln(87.7)
, |x| < 1

87.7
1+ln(87.7|x|)
1+ln(87.7)

, 1
87.7

≤ |x| ≤ 1
(3.1)

Static payload type 8 is a-law[26] shown in Equation 3.1 and used in Europe.

F (x) = sgn(x)
ln(1 + µ|x|)
ln(1 + µ)

− 1 ≤ x ≤ 1 (3.2)

In each case x is the input sample in the range of x ∈ [−1, 1] and F (x) is the
encoded value stored as byte.
Both static payload types specify one channel and a sampling rate of 8000Hz.
As seen in section 3.3.1, in packet-based telephony there is always the prob-
lem of dealing with packet-loss which is called Packet Loss Concealment.
For the G.711-codec every packet contains only a specific short piece of sam-
ples independent of other packets. Therefore only receiver-based techniques
can be used, which try to create a substitution packet for the one that was
lost. The simplest method would be to replace the lost packet with silence,
which results in very bad results. An excellent compromise between imple-
mentation complexity and result is duplication of the last packet (See Fig-
ure 3.4 and compare the magenta line “G.711, Burst=1” with the dark-blue
line “G.711plc, Burst=1”). An appendix to the G.711 standard also describes
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Fig. 3.4: MOS depending on packet loss for the G.711 (and G.729)
codec. MOS (Mean opinion score) is expressed from 5 for
excellent to 1 for bad. Burst describes how many consecutive
packets were lost. The curve for G.711 uses silence for lost
packets, while G.711plc uses the simple form of packet loss
concealment to duplicate the last packet. Courtesy of [27]

a computationally expensive algorithm to reconstruct the missing waveform.
More complicated codecs like ILBC [28] are specifically designed for grace-
ful speech quality degradation in the case of lost packets. By using prediction
and modeling speech instead of simply encoding it, they can easier regener-
ate missing packets. They can also use so called sender-based techniques for
packet loss concealment like interweaving data from other packets. For an
example of the performance of ILBC, see Figure 3.5.

Fig. 3.5: MOS depending on packet loss for the ILBC-codec. Note
that the x-axis ranges from 0%–15% unlike 0%–5% as in Fig-
ure 3.4. Courtesy of Global IP Sound [29]
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3.6 STUN, NAT and Session Border Controllers

As we have seen in the last sections, there are several places where IP-
addresses and port-numbers are embedded into SDP and SIP-packets, maybe
even protected with TLS. Furthermore RTP doesn’t use fixed port numbers,
but instead dynamically assigned free ports. This, of course, raises several
problems in todays home as well as corporate networks, which make heavy
use of firewalls and NAT (Network Address Translation)- routers. Often the
parties A and B participating in a call are both behind NAT-devices.
A NAT device in its most common form (also known as masquerading) trans-
lates port numbers and IP-address in IP, TCP and UDP-packets in a way that
a whole private network (like 192.168.1.0/24) can access the internet through
only one public addressable IP-address, for example assigned by a broadband-
ISP. For UDP-packets –unlike TCP-packets– there is no clear definition of a
connection and its termination which would be necessary for matching and
rewriting incoming answer-packets to outgoing packets.
For UDP two main heuristics are applied by NAT-devices:

1. If an application or host sends UDP-packets to the internet originating
from a certain port, it is assumed that it will also want to receive answers
to only that port.

2. If an application or host sends an outgoing UDP-packet, the NAT-devices
creates a mapping in its translations-tables and leaves it for several min-
utes. This creates a kind of virtual connection based on the assumption of
regular packet flow.

The latter is the reason why SIP-clients usually support the feature to regularly
send empty SIP-packets to keep the connection open, even if there is no phone
call for hours. The SIP-proxy can then “answer” these packets with a SIP-
INVITE-requests for a new incoming call.
According to RFC 3489 [30], there are several types of NAT-devices:

- Internal PC with IP A
- Application sending
   from port A’ and
   listening on port A’

NAT-device
Public IP C

- Host with IP B
- Application sending
  from port B’ and
  listening on port B’

Internet with
public IP-adresses

External port C’
is mapped 
to A’ on A

Fig. 3.6: Simple NAT-scenario where A is behind a NAT-router and B
has a public IP

If an UDP-packet from internal host A and port A′ is send to the outside host
B, port B′, then first this packet is rewritten, so that it appears to be originating
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from the public IP of the NAT-device C. The source port is rewritten to C ′,
a free, currently unused UDP-port of the NAT-device. This is recorded in the
NAT-translation table. (see Figure 3.6)
If the NAT is a

• full cone NAT,
• port restricted cone NAT or a
• restricted cone NAT,

then a packet sent with source port B′ from host B arriving on the NAT-
device (IP C) on port C ′ will be rewritten and forwarded to A on port A′.
Furthermore the same mapping of (A, A′) to (C, C ′) is reused also for any
other destination than B, B′.
But if it is a

• symmetric NAT

then packets coming from IP-address B on port B′ are the only ones for-
warded to A on port A′. Furthermore a different mapping can be used for
each destination.
For the former three types of NAT-devices, a trick known as UDP hole punch-
ing [31] can be used to establish a direct connection between A and B despite
of the NAT. For symmetric NATs this is not possible, because the mapping
cannot be determined by the SIP-phone behind the NAT.
This trick is based on the STUN (Simple traversal of UDP over NATs) proto-
col and algorithms [30]. A STUN-server can be contacted by a STUN-client
on two different ports and two different IP-addresses to learn

• whether it is located behind a NAT and which type of NAT it is, i.e. how
the mapping changes for different IP-addresses and ports and from where
answers can be received.

• its external IP-address, so that it can embed the correct IP-address in e.g.
SDP-data or in the contact-header of SIP-packets

• the specific binding of a port-number, i.e. which outgoing internal port-
number A′ was mapped to which public visible port number C ′.

A simple version of NAT-punching works like this after a SIP-phone has de-
tected that it is used behind a NAT:
When an RTP-port was allocated for a call, first STUN is used originat-
ing from this port to determine the associated external IP-address and port-
number. These are announced to the other party in the SDP-portion of the
SIP-INVITE-request instead of the internal ones. The other party does the
same with its RTP-endpoint and the SIP-response containing the SDP.
When the call starts, both parties start to send RTP-streams roughly at the
same time. But depending on the specific type of NAT, the first RTP-packets
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of B might be lost and dropped by the NAT of A, because it does not yet allow
incoming packets from the specific host and port of B. But because A soon
also starts to send packets to B and its IP and port-number, A’s NAT quickly
allows incoming packets from B’s IP and port. Thus by using STUN a direct
connection can be established in spite of NATs without any changes to the
RTP, SIP and SDP-protocols.
Because this trick relies on unchanging mappings of internal ports to external
ports, it does not work with symmetric NATs.

Session Border Controllers

Another common, but controversial technique to solve costly NAT-related
support calls in exchange for increasing bandwidth consumption is the use
of SBCs (Session Border Controllers) or similar kinds of relays. In this case,
the SIP-provider rewrites all IP-addresses and ports embedded in SDP-bodies,
so that all RTP-traffic is relayed through his servers which are accessible with
public IPs. This also helps with lawful interception.
This technique is very reliable, but can be expensive and has problems with
SMIME or –to an lesser extent– TLS-encryption of the SDP-body contain-
ing the IP-addresses and port-numbers. Also it might be that the relay is not
willing to transport more than one RTP-stream, thus limiting video confer-
ences or other innovative application specific data. Some SBC-vendors even
provide monitoring and restrictions of the transmitted voice-data and used
bandwidth [32], which can seriously impact novel uses of SIP and RTP to
transport application specific data like signatures for non-repudiation.
Experiments in preparation for this thesis showed the interesting result, that
two main SIP-providers in Germany, namely GMX from United Internet and
SipGate from Indigo Networks, already redirect all traffic through their own
relay servers, even without earning money from network-internal calls. For-
tunately, these redirect servers did not apply polices or filters and forwarded
any kind of RTP-traffic presented.
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Concepts1

4.1 Main requirements

The central requirements for achieving non-repudiation by signing VoIP are,
of course, related to security. Of the well known trinity – Confidentiality, In-
tegrity, and Availability – of information security requirements, integrity is the
central one to achieve non-repudiation for digital, packet-based, natural lan-
guage communication. It needs to be assured that a communication was not
changed at any point in time, be it during transmission or later. Furthermore,
integrity comprises as well the integrity of any relevant meta-data created or
used during a call, in particular call-time and the data that authenticates the
communication partners, or at least the partner exerting the signature over the
communication.
Due to the special features of voice communication, i.e., a bidirectional, full-
duplex interactive conversation, only both channels together provide the nec-
essary context to fully understand the content of the conversation and to make
use of the inherent security that interweaved natural language conversations
provide. To ensure that parts of the talk are not exchanged with other parts,
replaced by injections, or cut out, the envisaged system needs to ensure what
we call cohesion. This means that the temporal sequencing of the communi-
cation and its direction is data for which the integrity needs to be protected
in a way that makes later tampering practically unfeasible, i.e., by sufficiently
strong cryptographic methods. Cohesion as a feature related to time entails
a subsidiary requirement, namely the secure assignment of a temporal con-
text to a conversation. Each conversation has to be reliably associated with
a certain time, which must be as close as possible to the conversation’s start
and the initiation of the signing (note that assignment of a signing time is a
legal requirement for qualified electronic signatures according to the Euro-
1 Parts of this section can also be found in our paper submitted for [1]
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pean Signature Directive and pertinent national regulations). Drift of the time
base should be mitigated during a signed conversation. Finally, cohesion also
refers to qualitative aspects of the communication channel. A signatory is well
advised not to sign a document which is illegible or ambiguous. In the dig-
ital domain this relates to the presentation problem for electronically signed
data [33]. In analogy, the quality of the VoIP channel must be maintained to
a level that ensures understandability to both partners during the time span in
which the conversation is signed.
To ensure later availability of a signed conversation is a trivial requirement
for the receiver to be able to make use of it as evidence. Considerations of
long-term archiving aspects for signed digital data can be found in [34].
Further requirements regard the efficiency of the system design and imple-
mentation. First, it is highly desirable, both from a security as well as an
efficiency viewpoint, to sign and secure the VoIP conversation as “close” as
possible to its transmission, and conceptually close to the actual VoIP stream,
which is realised i.a. by using the the original RTP-packets as part of the
signed and archived data format. Simplicity of the implementation should
minimise the effect on existing systems and infrastructures. For the archiv-
ing scenario (section 2.2.1), no additional client-side requirements should be
necessary. For the signing scenario (section 2.2.2), obviously clients need to
be modified, but for both scenarios the existing infrastructure should be left
completely unchanged. This can be achieved as long as a way to transport ad-
ditional signing data is available, which is the case for SIP/RTP. An efficient
use of memory, bandwidth, storage space, and computational resources can
be achieved by undermentioned conceptual design decisions. Furthermore,
scalability of the concept to a large number of concurrent calls is a necessity
in real business environments. This means that centralised signature creation
infrastructures must be avoided. Finally, any architecture that copes with VoIP
needs to appropriately take packet loss and quality of service into account,
in particular in view of the cohesion requirement.

4.2 Requirement and concepts for dealing with packet loss
and QoS-Policies

In general, packet loss leads to modifications of the conversation perceived by
the receiver, which is a problem when providing non-repudiation. When the
archived data is played back as evidence, it must be semantically identical to
what both partners said: This of course includes the requirement of cohesion
from the last section, i.e. it must be impossible that parts are cut and ex-
changed. But also the interactivity and understandability must be maintained:
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If B does not understand what A said (because he mumbled, had ambient
noise, expressed himself unclear, B did not listen or the transmission was dis-
torted by jitter, delay or packet loss) he asks for clarification or repeating of
what was said and vice versa. So the fact whether some part of the conversa-
tion was heart by the other party must be protected, too. And packet loss is
the natural attack/problem for this requirement, because it affects understand-
ability.
Because it is generally a good principle that A only signs what was actually
heart and transmitted, the protocol will support this and handle packet loss
like this (also see Figure 4.1):

Internet and SIP-proxies

Proxy-Server for 
signing of calls

A
B

          Proxy-Server for
          signing of calls

Feedback which packets were lost/received

Signatures for these packets

Signatures for these packets

Archiv

QoS-
Policies

RTP-Stream A B 

RTP-Stream B A 

QoS-
Policies

Fig. 4.1: Simplified diagram of the signing protocol: Besides the two
normal RTP-streams for voice, there are two additional chan-
nels to tranport lists of packets actually received by the other
party, so that only these packets are signed.

Instead of signing the packets B sends on the way to A, only the packets that
A actually received from B are signed. And not the packets that A sends to
B are signed, but instead the packets that B actually received are signed.
A result of this principle is of course that signing can only happen with a cer-
tain delay as seen in the next chapter.
So this design principle deals with packet loss and guarantees, that only pack-
ets that were heart by the receiver are actually signed. But this does not yet
guarantee the goal to protect understandability and thus interactivity and its
semantic meaning: Now A needs to trust B that B correctly reports the amount
of packets received back to A and vice versa. If B forges this information,
there can be a mismatch between recorded call and acutal interactivity: B can
still listen to the packets and play that part of the call in real-time and thus the
person B knows what A said and can pretend that he heart it. But his software
could be manipulated (by B) to transmit a wrong amount of packets, so that
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A will not sign this part (which might be unfavorable to B). In front of court
when the recording that A signed digitally is presented, A suddenly learns that
important objections and constraints he made are missing.
This also works vice versa: A can pretend that packets from B did not arrive
and therefore are not signed. And yet, he heart them, understood them clearly
and maybe even approves them verbally. So B is tricked because he thinks
that the whole call or negotiated contract is non-reputable. Later he wants to
use the call as evidence and learns that some statements of A are so distorted
that they are inaudible. The whole recording might be worthless to him.
The solution to this is controlling the quality of service. Both parties agree to
a level of quality (in terms of packet loss after dropping packets that are too
late for dejittering) and the software will terminate the call, if this level is not
met. This is called a QoS-underrun and the agreed quality bar is called QoS
threshold.
As seen in chapter 3.5, some percent of packet loss will not affect the under-
standability of the call, especially when advanced codecs like Speex or iLBC
are used. Furthermore in experiments done for this thesis, significant packet
loss was seldom seen at all, especially over broadband-connections. Packet
loss usually occurred together with really bad quality or congestion of the
connection, which lead to complete drops of communication: Either by the
software or by the caller or callee who can’t hear each other and try to call
again. An example for this is leaving the reception area of a wireless lan.
Therefore it seems very plausible to handle packet loss in this way: It is mea-
sured and if it reaches a to severe level, the connection is forcefully terminated
by the proxy-software. Of course this is a matter of policy and therefore con-
figurable. Here an default value of 5% is used which worked very well.
It should be noted that this implementation of a proxy-server (instead of di-
rect inclusion in a SIP-client) can now be seen as a reference monitor [35]:
RTP- and SIP-packets will only go through the proxy-server, he does not
only provide access, but can also enforce policies, namely that specific QoS-
guarantees are met.
It should also be noted that this method here for handling packet loss is in
strong contrast to the technique of stream signatures presented in [13] where
the authors show methods of signing unidirectional broadcast traffic in a way
that makes it possible to still check a signature if packets are lost in trans-
mission. Here signatures for lost packets are simply not provided. If packets
are lost afterwards (e.g. in the archive), this is detected because it means that
integrity is broken. This could invalidate the whole recorded call.
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4.3 Extending SIP/RTP to transport signatures

As seen in Figure 4.1, obviously there must be a way to transport signatures
and lists of actually received packets over the internet between A and B. The
signing protocol extends SIP/RTP in a compatible way to transport signatures
and acknowledgments of signatures. Several ways of doing this on protocol-
level are explained in chapter 5. Here it should be noted, that a strength of the
technique is that it does not modify or in any way delay the transported au-
dio stream itself. Instead signatures are transported separately from the audio
stream in an extra channel.
Without delaying and postponing the signing process itself, the real time
requirement for interactive voice can be achieved. Of course this method
wouldn’t achieve non-repudiation of the call if it was possible for A to simply
stop the signing process and let B believe that everything is okay. (And vice
versa). Therefore time-limits are defined how long a signature (or an inter-
val signature, see next section) may be delayed before the call is terminated.
Again this is a matter of policy, different options would be to signal it to the
users or to ignore it. But the preferred policy is to abort the call and signing.
If this timeout is one second, then only one second of speech could be made
before the call is terminated. This barely is enough to make any statement or
say a complete sentence.

4.4 Building intervals to gain efficiency

As stated in section 4.1 it is important that the implementation is efficient and
scalable. Therefore solutions like signing every single packet with a signature
algorithm like RSA is neither efficient with respect to bandwidth and stor-
age capacities, nor sufficient to protect the full conversations. Signing each
packet alone easily uses more than 128 bytes to store a signature of a RTP
packet with maybe only 44 bytes of sampled audio and is computationally
expensive. Therefore the central concepts of intervals and interval signa-
tures are introduced.
Each party collects packets in intervals of adjustable length, e.g., one second.
Time based intervals could pose certain problems as it might be hard to pre-
dict the size of the required buffers for very dynamic codecs or suspension
of the timer. Other solutions to determine the duration of a interval could be
based on the sent and received amount of packets. But for the sake of simplic-
ity here the amount of packets in an interval is based on timer based events.
Every second the collected packets are sorted by sequence number and their
hashes are assembled in a data-structure with additional meta-information
like direction, sequence numbers and time. This small data-structure is then
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RTP-Stream

1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

{1, 2, 4, 5, 6} {7, 8, 9, 12} {14, 15, 16, 18} {19, 21, 22, 23}Packet-Lists

{h(1), h(2), h(4), h(5), h(6)} {h(7), h(8), h(9), h(12)} {h(14), h(15), h(16), h(18)} {h(19), h(21), h(22), h(23)}Hashes:

s({h(1), h(2), h(4), h(5), h(6)}) s({h(7), h(8), h(9), h(12)}) s({h(14), h(15), h(16), h(18)}) s({h(19), h(21), h(22), h(23)})Signatures:

Fig. 4.2: Building intervals: After a certain time the collect-buffer
(illustrated as a funnel) is flushed and processed. First the
packet-list is created. Below the list of hash-values is shown.
Below that the hash-values (without the packets themself) are
signed. Not shown is important additional metadata which is
signed together with the hashes like the date/time of each in-
terval and the direction.

signed with a conventional signing algorithm like RSA, using the private key
of party A. They are then sent to B who will store them together with the col-
lected RTP packets he actually received. Note that the full packets are trans-
ported only once in the normal RTP stream. Therefore bandwidth as well as
CPU time needs are drastically reduced making the whole method applicable
in the first place (computing hashes is much less expensive compared to RSA
signatures, especially on mobile phones with limited processor-speed).
As a side note, it would be possible to further reduce the bandwidth usage
since the sequence number of the packet is enough for B to reconstruct the
hash, rendering the transmission of hashes unnecessary. Transmitting only
packet numbers would bear the cost of additional consistency checks on the
part of B. This variation is not discuss further because the result would be the
same but presentation would be more complex than signatures built only on
actual data.
It is also important to stress that the signature for a complete interval is broken
if any of the hash values becomes invalid, namely, if any bit of the signature
or in the associated and stored RTP packets is changed, or if any packet is
missing. This is the basic way of protecting the integrity of the speech data.
So not only is the original RTP-stream completely unaffected from the sign-
ing process, but furthermore the additional data is very small and scare: Only
once a second a list of packets and a signature over their hashes is sent, while
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the RTP-packets continue to be transmitted with their typical high rate without
any delay (expect for making a copy of them to a buffer).

4.5 Achieving cohesion by interval chaining

Signature
(N)

Signature
(N+1)

Hash

H(N)H(N-1) Interval-data N

Interval N+1

Interval-data N+1

Hash

Interval N

Fig. 4.3: This Figure shows how intervals are chained and how signa-
tures and hashes are interleaved.

Signing intervals alone does not ensure cohesion for the whole call, only for
the 1s long intervals. An attacker could still exchange parts of the conversa-
tion or cut them out by exchanging and omitting complete intervals. Therefore
the concept of hash chains is used: Every interval contains, embedded in its
metadata, a hash of the last interval including its signature. In this way sig-
natures and hashes are interleaved ensuring that there is a continuous stream
of signatures building an unbreakable chain as seen in Figure 4.3. (That is, as
unbreakable as e.g. RSA and SHA1 are)

4.6 Interweaving both channels of bidirectional
communication

The chaining of intervals is further extended to factor in the bidirectional na-
ture of the call. Both channels are interwoven and the chaining applies to
both channels. An interval of packets from the channel A⇒B contains a hash
of the last signed interval from the channel B⇒A and so on. When lists of
packets and also intervall-signatures arrive on either side, additional checks
are employed that ensure that there is no time drift between both channels.
This way cohesion is strongly secured by RSA signatures and by the nature
of a bidirectional conversation: Mutual inquiries hold together the semantics
of the conversation, while synchronous time after start of the call is guaran-
teed by checks and secured with hash-chains over metadata and timestamps
embedded in the original RTP-packets.
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4.7 Signed data format and additional timestamps

As non-repudiation of calls is only meaningful if the party who is interested
in using a conversation as evidence –in this case party B– can possess it as
evidence, the signed conversation must be recorded. Special emphasis must
be put on the format in which the calls are stored, i.e. the final outcome of
the signing protocol (or alternatively the self-signed archive-scenario). All
intervals of a call are simply stored continuously by the proxy software the
recording party.

h(  ) Hash-Value of last interval
Date/time of end of call
Flag that this is the last chunk
Reason for termination of call:
    Hang-up, Error, Policy

h(  ) Hash-value of preceeding interval
Date/time of this interval
Direction of communication
List of absolute packet sequence-
   numbers
Hashes of packets

Used Codecs and mapping
From/To-SIP-URLs
Date and time of call start

Start-Chunk:

h(  ) Hash-value of first interval
Date/time of this interval
Direction of communication
List of absolute packet sequence-
  numbers
Hashes of packets

Chunk 2 for interval 1: Chunk N+1 for interval N: Last chunk:

Complete RTP-packets stored in same 
chunk, but outside of signed data

Complete RTP-packets stored in same 
chunk, but outside of signed dataTimestamp from trusted third party

PKCS#7 signed data, e.g. by A

Fig. 4.5: The data format for signed conversations. This also shows
the hash-chain of signed interval-data. Note that B stores the
collected packets next to A’s signature for each interval.
The box with the clock in the first chunk symbolises the time-
stamp from a trusted authority

In general additional timestamps (as can be seen in the start chunk in Fig-
ure 4.5) help pinpointing the exact start and duration of the call, thus provid-
ing additional security. This is especially important in the self-signed archive
scenario, where the archiving proxy might be compromised by an attacker.
Such an immense attack can be mitigated quite well, if

• the start of the call is signed by a trusted third party
• the long-term archive is separated from the archiving proxy
• the call data is immediately streamed from the archiving proxy to the long-

term archive
• the long-term archive immediately verifies that all arriving data is valid,

properly signed and has not too much packet loss, i.e. cohesion of time,
sequence numbers and timestamps are maintained.

• (optionally) an itemised bill from the phone company can be compared to
the timestamp

This architecture is highly secure, because an attacker would only have the
duration of one interval (e.g. 1 second) to execute his attacks including any
forgery, cuts, realigning and speech synthesis. While doing this he would
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have to maintain interactivity so that no participant notices it. Also any delay
in streaming an interval to the archive would be immediately noticed and the
whole call cannot be delayed to an later point in time because of the time-
stamp form a third party authority and optionally an itemised bill.
The format itself is shown in Figure 4.5 and is a simple chunk-based continu-
ous data format starting with an initial chunk containing meta-data (SIP URLs
of caller and callee, date and time of start of call and mapping of codecs to
RTP payload fields). After that signed intervals are stored as they are pro-
duced, reducing working memory requirements to the order of magnitude of
one interval. At the end of the call (either by normal hang-up or by policy
termination if quality of service requirements are not met) a special chunk is
added which contains date/time and the reason for the termination of the call.
For each interval the associated chunk contains the collected RTP packages
of this interval, and the following signed data:

• The direction/channel of the interval (from A to B or vice versa)
• The date and time of this interval
• The list of absolute package sequence numbers and
• The hashes of each considered packet.

In case of the signing-scenario, the signature is transported separately from
the RTP-packets, so the signature only covers hashes of the packets. Other
variations were described in section 4.4.
This signed data is embedded in a PKCS#7 signed envelope container.
PKCS#7 [36] is an established standard to sign data using public key cryp-
tography and X509-certificates [37]. It is able to carry the signing certificate
and also any intermediate certificate with the signature. Therefore it enables
the signature verifier to build and check the certificate chain against a trusted
root. Only the first PKCS#7 envelope needs to store the whole certificate
chain, all other envelopes do not need to store any certificates, because they
are then already known to the verifier.

4.8 Signing protocol

This section describes the protocol that is used to transport acknowledgments,
signaling, and signatures for the normal RTP packets containing multi-media
frames. It builds on section 4.2 and provides the missing details. As already
stated, the protocol does not affect or delay the normal transportation of any of
both RTP-streams. Instead it adds a second low-bandwidth transport channel
separate to the original one, e.g. a second RTP-channel. It should be noted
that most ways of transporting additional data provide UDP-like, unreliable
datagram-based communication and not a reliable stream like TCP. Therefore
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retransmission must be provided.
Initially it is necessary to signal the fact that someone is calling who has
signature capabilities and is willing to sign the conversation. This can be part
of the normal negotiation at the start of a SIP-call, e.g. with the the k-value
of the SDP-protocol which is used for securing the call using SRTP (see 3.4).
Here, A transmits essentially the same data as in the first chunk in Figure 4.5,
signed using his private key.
To further describe the protocol it must be stressed again that even though both
channels of the duplex conversation need to be signed to provide cohesion, in
the basic signing scenario still only party A needs to have a private key for
signing. A has to sign both directions of the conversation. Accordingly the
signing protocol differs for both channel directions which are described in the
next two subsections.

4.8.1 Signing the channel from A to B

h(   )h(   )h(   )h(   )h(   )h(   )

Channel direction: Outgoing channel of A

1516 111213 891014 567 123 04

410 975

10 4

5 7 9

A

410

0 1 4

V(N-1)
Interval N

A

975

5 7 9

V(N)

Collection-buffer 
of received 

packets only for 
the two intervals 

N and N+1

Original, unaltered RTP-stream

Feedback over received packets: List of packet numbers

Signed, chained data structure for two intervals

15

16

11

12 13

8 9 10

14

5 6 7

2 3

4

10

Collection-buffer of all 
sent packets for two 
intervalls N and N+1

Interval N+1

h(  ) Direction: {A B, B A}

Date/time of interval

Hash-function Signed data

V(N), V(N-1)    Chaining-values (hashes) of the preceeding interval Lost packet

Fig. 4.6: Schematics of the signing protocol for the direction A⇒B

For the channel direction A⇒B, A could simply send (every second) an signed
interval containing the hash-values of all his RTP-packets of this interval. If
any packet loss occurs –which is normal in current networks– B wouldn’t be
able to provide the missing packets as evidence. In this case his whole archive
of the call would be deprived of probative force. Therefore B transmits a list
of all sequence numbers of the packets he received during an interval to A,
who will then send the requested signature that covers exactly the received
packets.
More precisely both A and B continuously collect all packets for the chan-
nel A⇒B in a small buffer, as indicated in the left- and rightmost parts of
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Figure 4.6. Whenever B’s interval timer expires he will send a list of packet
sequence numbers that were collected during that interval to A and start a new
interval. The transfer of the sequence numbers is performed asynchronously,
while the conversation is going on. A will then create the hash values for this
list of packet numbers. He uses his complete collection of packets he sent.
Then he creates and signs an interval data structure as described in Section 4.7
and transmits it to B. B then checks the signature and hashes and stores this
together with the collected packets as a chunk in the archive file. He can then
drop the collection of packets from memory. A can drop his complete packet
collection from memory one iteration later, because if the communication that
is described in this paragraph fails, then B will retransmit its packet list un-
til A has successfully transmitted the interval signature. While waiting for
the response, the interval timer of B is temporarily suspended as it can only
fire after an interval signature was successfully transmitted. During this sus-
pension of the interval timer the signing process does not stop. The timer is
restarted if all data of the last interval is transmitted. If the transfer of this data
needs too much time (e.g. longer than the interval length) the system should
consider this as a quality of service under-run and terminate the call.

4.8.2 Signing the channel from B to A

h(   )h(   ) h(   )

Channel direction: Incoming channel of A

15 1611 12 138 9 10 145 6 71 2 30 4

410
0 1 4

V(N-1)
h(   ) h(   ) h(   )

0
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V(N)
1
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Collection buffer 
for received 

packets only of 
intervals N and 

N+1
Collection buffer 

of all sent 
packets for 

intervals N and 
N+1

Original, unaltered RTP-stream

Signed, chained data structure for two intervals

Acknowledgment that interval data arrived
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14

5 6 7

2 3
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Fig. 4.7: Schematics of signing protocol for the direction B⇒A

The communication for signatures for the channel B⇒A is a little bit different.
Again A and B both collect all packets for the current interval. But this time
A decides on the precise point in time at which a new interval starts. Then
A takes the collected and sorted packets which are exactly the packets that
were not lost in the transmission from B to A, creates hashes over them, and
sends them in a signed interval data structure to B. When B receives this it has
to send a short acknowledgment information for this interval to A. If A does
not receive this before a timeout occurs, he will resend the signature package.
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Until the acknowledgment is not received, A will not start a new interval and
the interval timer is temporarily suspended. This process is sketched in Fig-
ure 4.7.

4.9 Test criteria for verification of signatures

This section describes the necessary tests to verify that signatures are valid. In
the signing scenario, A and B must performs tests continuously and employ
timeouts to mitigate certain attacks and maintain a correctly signed, authen-
tic, non-reputable call continuously. Additionally, a tool to verify the data
file containing the archived call must be developed. This tool can be used
anytime by any user or even an expert witness in front of court to verify that
an archived call is valid and correctly signed. The need for such a tool is
a sure requirement, because the data format is not a simple signature over
a complete document like with SMIME-emails, which can be verified with
many email-clients. Instead things like the hash-chain or packet loss must be
checked. If these additional checks succeed, this leaves the problem of check-
ing the embedded PKCS#7 signatures according to common x509-certificate
and PKI-rules. Further discussion and algorithms to do so are discussed in
RFC 3280 [37]. A common solution is to install a list of trusted root certifi-
cates on the verifiers computer and to roll out valid certificates to all signers.
It can be envisioned that X509-certificates can be extended to not only se-
cure the identity of X.501-names, internet hosts and email-addresses, but also
SIP-URIs. But because SIP-URIs look like email-addresses, existing email-
certificates can also be used.
In the self-signed archive scenario, no additional data is transferred between
both parties. Therefore the most basic scenario of the archive contains no on-
line verification: Only the mentioned tool will perform checks and it can be
invoked at any time on an archived call file.

4.9.1 Common checks on the file format for both scenarios

These checks are performed by the verification tool and by B in the signing
scenario (A is the person who signs the call):

CHK1 Checking whether the first interval with the meta data is correctly
signed by the external time-stamping service. It must also be checked that
the time of the timestamp is close to the start time of the call because
this is the basis for cohesion and forms the temporal context. If there is an
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additional third party proof of the time of communication (like an itemised
bill from the phone company) this can as well be compared to this initial
timestamp manually.

CHK2 Validating the PKCS#7 signature of each interval. As only the first
interval contains all certificates to build the full certificate chain, these
must be cached for verification of all other interval signatures.

CHK3 Verifying interval chaining. This can be easily done by storing the
hash of the last interval and comparing it to the embedded hash value in
the current one. If they do not match the chain was broken, the call is
invalid from that point and an attacker might have to cut or rearranged
sections of the call.

CHK4 Checking packet loss by checking the absolute sequence numbers in
the interval structure. If the packet loss is above the QoS threshold, the call
should be assumed to be invalid from this point, because understandability
could not be maintained and a conforming archiving software would have
terminated the call at that point. (Note that this is a matter of policy.)
A good QoS threshold is 5% packet, which still ensures good understand-
ability.

CHK5 The borders of the intervals are checked against the respectively next
interval, ensuring that there is no gap larger than few packets.

CHK6 Checking the consistency of the RTP packets: Timestamps and se-
quence must be strictly monotonically increasing with no overlaps.

CHK7 Checking the temporal integrity of the RTP packets, i.e., whether the
time-stamps and sequence numbers stored in the RTP protocol, which can
suffer from overflows and rollovers, are consistent with the time recorded
in the interval. Also it must be possible to reconstruct the sequence num-
bers so that they match the recorded absolute sequence numbers.

CHK8 Checking against duplicate or replayed packets by using the algo-
rithm form SRTP.

CHK9 The intervals of both channels are checked to have matching time so
that they cannot drift away from each other and break cohesion.

4.9.2 Additional checks for the signing scenario

In the signing scenario the same checks are performed online by the receiving
party B. If anything fails, B immediately detects this, optionally informs the
user and terminates the call. This is in contrast to the archiving scenario where
a conforming implementation of the archive would always result in valid calls,
but where only the verification tool can verify the correct archiving of calls
and conformance to policies and the rules and formats presented here.
Of course, if B uses a non-conforming implementation he could create invalid
archived calls. But this would provide no advantage as the evidentiary value
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would be lost.
In the signing scenario, CHK4 should be modified so that B will abort archiv-
ing if a QoS underrun is detected. With the most secure policy he would also
forcefully terminated the call. A proxy-implementation could easily do this
by injecting a BYE command and terminating any other SIP and RTP for-
warding.
A also needs to check packet loss as discussed in section 4.2. If he detected a
QoS-underrun, he should stop signing immediately.
An additional check is possible because the online scenario provides a real
reference time source:

CHK10 Checking the time embedded in the intervals whether it drifted not
more than two times the interval duration from the internal clock of B.

Note that all DOS-attacks emerging from this protocol can be easily mitigated
by using SRTP and its HMAC-based authentication. Otherwise an attacker
who is able to spoof UDP-packets could inject packets or signatures violating
these checks and therefore terminate existing conversations.
With these policies a consistent approach to fulfill the requirements of in-
tegrity and cohesion was presented. In view of scalability and efficiency,
by adjusting the interval duration a trade-off between required computational
power and the maximum unprotected time can be adjusted. But the default
time of twice the interval time of 1 second is believed to be already sufficient
to make it very hard to change the meaning of a signed conversation. An at-
tacker should not be able to forge more than two seconds at the very end of
the conversation before the call is forcefully terminated. It should be noted
that all described checks can as well be performed in a forensic evaluation,
since all the data on which checks are performed is signed and secured.
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Discussion of possible ways of transporting
signature data

To solve the requirement of the signing scenario to provide a secondary bidi-
rectional communication channel between A and B (see section 4.3), several
methods can be used. Also the signaling of the presence of a signing ser-
vice must be announced. This chapter presents several ways to accomplish
this. Some of these methods were implemented in the demonstrator to make
experiments with various SIP-providers, namely GMX, 1&1 and SipGate:

Using SDP for signaling As stated before, the k-value of SDP which is re-
served for keys would be a logical match for transporting e.g. a
public key. Therefore extending this to the whole starting interval,
which is also timestamped, should be okay. Tests with the above
mentioned SIP-providers showed that the line with the k-value was
transported through the SIP-providers without problems and even
transporting illegal SDP (like a line with Y=) was handled without
problems.
An advantage of this solution is that signaling happens as early as
possible, i.e. before the call is picked up. A disadvantage is that
it can be filtered by the provider, but little can be done against that
anyway. A more serious problem is the amount of data that can
be transported: Tests showed that up to 14kB could be transported,
but this would lead to serious UDP-fragmentation. This could be
mitigated by transporting only the information that the service is
present and not the actual first interval, which would be transmitted
with another way.

SIP-SUBSCRIBE and NOTIFY As seen in chapter 3, this is a general way
to subscribe to and signal any kind of events between SIP-clients. It
is defined in RFC 3265 [18]. Currently it seems to be used mainly
to control a LED for a waiting message indicator.
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SUBSCRIBE and NOTIFY could be used to find the signing ser-
vice and to subscribe to its events. They could even be used to
transport the actual signature data, which would be forwarded by
the SIP-proxies and SBCs, if present.
While this approach seems to be very standard-friendly at first, a
problem is that the event-framework was only designed to trans-
port events that happen rarely. RFC 3265 explicitly states that this
mechanism is not expected to be used for rapid frequencies, be-
cause this could overload SIP-networks. Still this method would be
ideal to start signing in the middle of a call.
Tests showed however that none of the tested providers trans-
ported SUBSCRIBE-messages between SIP-clients. NOTIFY was
blocked by SIPGATE.
Another disadvantage of this approach is digest-authentication. To
protect against SPAM and abuse of services, SIP-proxies usually
force authentication for REGISTER and INVITE. It is to be ex-
pected that they enforce this for SUBSCRIBE, INFO and MES-
SAGE, too. In that case, the proxy would have to know the pass-
word of the client and loose its universality.

SIP-INFO SIP-INFO allows for the carrying of session related control infor-
mation that is generated during a session. One example are DTMF-
dialtones, which can be transported using this method. The soft
phone X-Lite uses this method. This extension to SIP is defined in
RFC 2976 [20].
This approach is similar to SUBSCRIBE and NOTIFY, because it
could overload the SIP-network. On the other hand, it is less likely
to be limited by throttling or digest authentication because it is al-
ready used for dialtones.

SIP-MESSAGE RFC 3428 [19] proposes the MESSAGE SIP-method to
transport instant messages over SIP. MESSAGE requests do not
themselves initiate a SIP dialog. Under normal usage each instant
message stands alone, much like pager messages.
This method also has the disadvantage that it might overload
SIP-networks. Because of the SPAM and SPIT or –more
specific– SPIM-problem it is very likely to be affected by digest-
authentication. On the other hand it is less likely to be blocked by
SIP-providers because chatting has much more demand and appeal
to end users than e.g. a general purpose event-framework.
The biggest disadvantage of this method is that it is a clear abuse
of the intended usage of instant messages.
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Custom UDP or TCP data stream Signatures could be transported by cre-
ating a completely custom protocol that works parallel to the
SIP/RTP-communication. An advantage is that there would be
no restrictions of size and contents of the transported data. If a
signature-service is not present, such incoming connections would
simply be blocked by the network stack if no process is listening to
the assigned port. This would reduce potential compatibility prob-
lems to a minimum.
A strong disadvantage of this approach is the whole topic of NAT-
routers and session border controllers (see section 3.6). SBCs
would not help to reflect custom TCP/UDP traffic from two users
each behind a NAT. Such a solution would need to deal itself with
the prevalent NAT-routers and may even have to supply its own re-
flection servers.
In contrast, all following approaches would exploit the existing
mechanisms and optional data reflection services like SBCs for the
transportation of signature data, if they don’t block it by detailed
traffic analysis

RTP with different SSRC In general it would be favorable to use RTP in-
stead of a completely new protocol to transport signature data. This
can be done by sending the packets using the same RTP-port as the
existing speech channel, but with a different value in the synchro-
nisation source field of the RTP-packets to differentiate between
signature data and speech data. An advantage of this approach is of
course that it uses the same RTP port and therefore benefits from
any redirection services, port forwarding or STUN-servers, which
might be provided only for one port-pair. An advantage might also
be that systems manipulating RTP like mixers can see that the sig-
natures are coming from another system and leave them alone. But
on the other hand the RTP-standard does not support any kind of
multiplexing of different kinds of data and other systems might not
understand the signature data.
In experiments it was shown that SipGate and GMX both do not
modify or process RTP-streams for pure internet based calls.

Multiplexing using different codec In principle, one RTP-stream could
transport data encoded with up to 127 different codecs. Therefore
it would also be possible to multiplex speech and signature data
with the payload-type field instead of the SSRC. This is already
done with DTMF-dialtones (see RFC 2833 [16]). An advantage of
this approach would be that devices not understanding the signature
pseudo codec should simply ignore it. An strong disadvantage of
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this approach is that the RFC standard explicitly forbids any kind of
multiplexing, e.g. for video and audio and SDP is not able to repre-
sent multiplexing. Instead, multiple RTP-streams should be used.
On the other hand, signatures are not a different kind of medium,
but an additional security property of an existing stream.

RTP Header extension As seen in section 3.3.2, RTP supports experimen-
tal extensions. These could be used to piggyback signature in-
formation with some of the regular RTP-packets. This must also
contain a flag whether the original payload should be processed
or not because silence suppression could lead to one of the RTP-
channels being “silent” for a period of time. An RTP-extensions
would clearly be ideal if every packet was to be signed with its
own signature instead of using intervals. And with intervals it
would also have the advantage, that these would be piggybacked on
UDP-packets that would be send anyway, so that additional UDP-
overhead for signatures would be saved.
An disadvantage of this method is the incompatibility with existing
RTP-implementations and the lack of a global registry to register
magic numbers for RTP-extension types.

New RTP-stream and port SDP supports multiple RTP-streams per SIP-
session very well. As seen in 3.2, RTP-streams even have an as-
sociated type of “audio”, “video” or “application”. A new RTP-
stream of type “application” can be added to a normal audio and/or
video conversation.
An advantage of this approach is that signature data is clearly sep-
arated from e.g. audio streams and the different ports can even be
opened by different processes. While providers might be able to fil-
ter out all but one RTP-stream and not provide reflection for these
services, on the other hand the existence of video conferences in
SIP-clients seems to be a supported scenario desired by customers.
This mandates support for more than one RTP-stream.
The OpenSer software used by SipGate supports a feature named
NatHelper that redirects UDP-traffic to special public servers that
can be reached from behind a NAT. NatHelper provides these
reflection-services for up to eight RTP-streams per session and
therefore works with this approach. Then again, other providers
might handle this differently.

The solution of choice here is to use the k-value of SDP for signaling and a
separate RTP-stream of type “application” for the signature data. Therefore
the proxy implementation is not concerned with knowing the user’s password
or doing digest authentication.
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The supplied software

This chapter describes the software implemented for this thesis. The supplied
programs are:

SipProxyGUI.exe This is the main program, a SIP proxy server which
redirects SIP and RTP packets to itself to allow for passive archiving and
active modifications.
It contains a testbed for signaling and transporting signing data in parallel
to calls and implements the complete self-signed archive scenario.

CheckFile.exe This is the verifier that checks signed calls for integrity,
trusted signatures and cohesion. It also allows playback of archived calls
and export as WAV-files, e.g. for submitting calls to an forensic expert
witness.
It also contains analysis and statistics tools for packet loss to encourage
further, more detailed experiments and analysis for the optimal value for
QoS-abort beyond the compromise of a 5%-boundary presented in this
thesis.

Statistics.exe This is a subset of CheckFile.exe with statistic
and analysis functions only. CheckFile.exe is able to export the list
of packets with their jitter and contents as CSV-files. This program can
import them and analyse them independently of archived calls.

Screenshots of the three programs can be seen in Figure 6.1. All programs
are currently based on the Microsoft .NET-framework [38] and run under Mi-
crosoft Windows and all programs show a GUI. But this is no limitation, be-
cause GUI and implementation have been strictly separated. The proxy itself
also runs under Linux using the Mono Project [39]. The GUI of the proxy is
only used to monitor and debug SIP-connections and the signing and archiv-
ing process. This is not needed if the proxy is used in a server-scenario where
it is installed on a headless machine, e.g. in a corporate environment.
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(a) SipProxyGUI.exe (b) CheckFile.exe

(c) Statistics.exe

Fig. 6.1: GUIs of the three supplied programs

The following steps are necessary to run the software:

• Install the “Microsoft .NET Framework 2” from Windows Update.
• (optional) If the programs should be recompiled or modified, install the

free “Visual C# 2005 Express Edition”.
• If calls should be signed, at least one valid certificate must be installed in

the Windows Certificate Store. The private key must be available. For chip
cards and chip card readers, compatible drivers must be installed.
You can get your certificate from e.g. your network administrator, institu-
tion or commercial vendors like Verisign.com, Geotrust.com or
Thawte.com or the free CaCert.org. Software and instructions for
generating self signed certificates is out of scope for this thesis.

• If signed calls should be verified to be completely valid, trusted root cer-
tificates must be installed in the Windows Certificate Store if not already
present. Otherwise verification will fail.

• If you want to archive conversations, a SIP-account must be available. By
supplying your German bank info you can get one from gmx.de. Or

Verisign.com
Geotrust.com
Thawte.com
CaCert.org
gmx.de
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get one from Sipgate.de, which even includes a German telephone
number. Both are free unless you call numbers from the old telephone
system or other providers.

• If you want to archive conversations, a SIP-compatible soft phone or hard-
ware device must be available and reconfigured to use the proxy server.
This is explained below for the free soft phone “X-Lite” from xten.com.

• The timestamping service must still be in operation on my server or you
must setup your own by simply copying all files from the folder “TimeS-
tampService” in a new virtual directory of an Microsoft “Internet Informa-
tion Server” (IIS) on a server where the .NET-framework 2 is installed.

6.1 Handling of certificates

Fig. 6.2: In the proxy-server, an certificate can be selected from the
Windows Certificate Store

As the .NET-framework has extensive classes for certificate handling and
PKCS#7, the program can hand of the actual verification task to the underly-
ing crypto provider. Under the Windows operating system, this is Microsofts
Crypto-API. For the self-signed archive, the user can choose a certificate from
the Windows Certificate Store as seen in Figure 6.2. Under Windows, verifi-
cation of PKCS#7 signatures and certificates is also done using the Microsoft
Windows Crypto API, so that trusted root certificates from certificate authori-
ties should be installed using the system command “certmgt.msc”: Click
Start, click Execute and type this in to manage certificates.

Sipgate.de
xten.com
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6.2 The TUD-chip card as example for a secure token

(a) The front-side of the TUD card (b) The used cardreader
“Kobil KAAN Ad-
vanced”

Fig. 6.3: Equipment for using a smartcard to sign a call

Another interesting feature of the developed software is that it supports chip
cards and card readers, e.g. the TUD chip card [40] shown in Figure 6.3(a),
which has been rolled out and distributed to all students of the Technische
Universität Darmstadt in 2006.
The recommended card reader “Kobil KAAN Advanced” [41] shown in Fig-
ure 6.3(b) comes with driver software which directly plugs into Microsoft’s
Crypto-API and install the certificate supplied by the TUD into the Windows
Certificate Store. This of course leaves the private key on the card and blocks
any attempts to access the private key directly or use it outside the card in-
serted into the plugged in cardreader.
In the demonstration environment the TUD card was used to sign the archived
conversations. Only a tiny modification had to be done to the software: It
would be very impractical for the user to enter the PIN-number every second
in the cardreader to confirm the signing of every interval separately. Until a
programmatic way to supply the PIN number to the cardreader is found, the
following workaround is used: At the beginning of the conversation, a RSA-
keypair is generated. The public key is signed together with the first interval
using PKCS#7, the whole certificate chain and the chip card. The private
key is kept until the termination of the call when it is wiped from memory.
All subsequent intervals are not signed with the chip card, but with the RSA-
private key.
It is unfortunate that the chip card – which naturally is very slow and needs
about 2 seconds for every signature– could not be used to demonstrate how
well the presented concept adapts to limited computational resources for sign-
ing.
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6.3 Compilation

This section describes how the program can be compiled from the supplied
source code.
Download the free “Visual C# 2005 Express Edition” from http://msdn.
microsoft.com/vstudio/express/visualcsharp/ and install
it. Then open the solution “SipProxy.sln” and click “Build Solution” in
the “Build” menu. Afterwards you’ll find the executable files together with all
necessary DLLs next to it in the subfolders “SipProxy\bin\Release\”,
“\CheckFile\bin\Release\” and “Statistics\bin\Release\”.

6.4 Configuration of soft phones to use the proxy

The main role of the proxy is to intercept SIP-packets and modify embed-
ded IP-addresses to redirect the audio-stream to go through itself for signing
or archiving. It supports multiple parallel calls with multiple SIP-clients/soft
phones to several SIP-providers (original outgoing proxies). SIP-clients must
be reconfigured to use this proxy as outgoing proxy instead of the original out-
going proxy from their SIP-provider. If they are installed on the same com-
puter, this new proxy should be configured to localhost (127.0.0.1)
and the appropriate port from Table 6.1: The main way for a SIP-client to
specify which original outgoing proxy it wanted to contact and what should
happen to the call (i.e. archiving or signing) is by using a different port num-
ber of the ones the proxy listens on.
In the demonstrator e.g. 127.0.0.1:5060 is a proxy that archives calls
and redirects them to sip.gmx.net:5060, while 127.0.0.1:5080
archives calls using SipGate.
If both programs are used on the same computer, port conflict may happen:

Proxy Port Action Provider Original outgoing SIP-proxy of the Provider
5060 Self-Signed Archive GMX sip.gmx.net
5081 Self-Signed Archive SipGate sipgate.de
5082 Self-Signed Archive Web.de sip.web.de
5083 Self-Signed Archive Freenet Phone iphone.freenet.de

Tab. 6.1: Default configuration for listening ports of the proxy.

While SIP-clients usually find a free port if the default port 5060 is already
occupied, the SIP-proxy relies on the fixed, known port numbers shown in
Table 6.1. Therefore it is best to start the proxy before the soft phone or to

http://msdn.microsoft.com/vstudio/express/visualcsharp/
http://msdn.microsoft.com/vstudio/express/visualcsharp/
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reconfigure the table entry for GMX.
The configuration of a widely-used free soft phone named “X-Lite” is shown
in Figure 6.4: “X-Lite” was setup with a normal account of GMX (domain,
username, password), only the outgoing proxy was changed.
On http://www.sipgate.de/faq/index.php SipGate has an ex-
tensive list of instructions for various devices. You can use these instructions
to setup your phone if you substitute the outgoing proxy with the one from
Table 6.1.

(a) Click the menu
button

(b) Choose system settings (c) Click SIP proxies

(d) Configure the first proxy (e) Change the outgoing proxy
according to Table 6.1

Fig. 6.4: Configuration of the X-Lite soft phone

http://www.sipgate.de/faq/index.php
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6.5 Instructions for the proxy

Figure 6.1(a) shows the first screen when the proxy is started. Here one sees
a tree where each top node is one of the four default proxy servers. The
nodes below these nodes are for every connected client. And for every client-
node, its child-nodes show different sessions or other SIP-actions, separated
by Call-ID. If a SIP-client was reconfigured to use the proxy correctly, at least
an entry for REGISTER should appear where the phone announces its address
to the provider. Each real phone call will result in another entry. If a failure
(e.g. exception) occurred, there will be a X in front of the call. In that case,
please look at tab of the main window named “log”.
Before making the first calls, you should choose a certificate as seen in Fig-

(a) Debug information from the basic proxy,
e.g. which RTP-ports are used for redirect-
ing

(b) Debug log from the highlevel component
“Self Signed Archive”

Fig. 6.5: Debugging information of the proxy

ure 6.2. In the same tab there is also the setting for the archive path. Each call
will be written to its own file in that directory.
After setup, you can make the first calls either with the soft phone or by calling
the associated telephone number of your SIP-account with the old telephone
system. Both outgoing and incoming calls will appear on the first tab as new
connections. Double click on it and you will see the tab “CallState” from Fig-
ure 6.5(a). It shows counters for packets and which new RTP port numbers
were allocated by the proxy to redirect RTP-packets for this call to itself.
The tab seen in Figure 6.5(b) is reserved for the higher implementations that
are base on the basic proxy, in this case the self signed archive. Here it shows
a log which absolute packet numbers were archived in which interval and
which events got passed to this component by the basic proxy.
The last interesting tab is “Statistics” which is explained in section 6.7.
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6.5.1 Configuration of the proxy

Several aspects of the proxy can be configured by modifying the XML-file
“SipProxyGUI.exe.config” in the program directory. But the default
settings should be fine.

MaxPaketsbeforeStopHighLevelLog This is the maximal amount
of packet related log entries that are logged. After this amount is reached,
logging of packet related data is suspended because RTP-streams could
generate lots of log-entries.

SelfSignedOwnCert The SHA1-thumbprint of the archive certificate.
This is better changed through the GUI. Settings changed in the GUI are
stored in another XML-file in the user profile and take precedence over
settings in “SipProxyGUI.exe.config”.

SelfSignedArchivePath Path for storing signed, archived calls. This
should also better be changed using the GUI.

TimestampUser Username for accessing the timestamp-service.
TimeStampPassword Password for accessing the timestamp-service.
SipProxyHelper_timestampservice_Service URL of the SOAP-

endpoint of the timestamp-service. When I stop to operate the primitive
timestamping-service created for this thesis, you’ll have to change this
setting so that it points to your installation of the timestamp-service.

AutostartArchiving Whether archiving should start at the beginning
of each call or only after the user chooses to do so.

UseSessionSigningKey If this is true, then only one PKCS#7 signa-
ture is used at the start of the call as described in section 6.1. This is done
to support chip cards.

replaydetectWindow This configures the size of the sliding window
for the replay detection algorithm used to detect duplicate packets. This
value can be up to 64 because the replay window is implemented as 64-Bit
sliding window.

SignIntervalMs The length of an interval, or more precisely: The timer-
value until a new collection of packets is started and the old ones are
signed. This value is in milliseconds.

MaxLookaheadWindowTime The amount of time that packets are al-
lowed to stay in the collector even if a new interval has started. This is
because packets can arrive in a different order and the collector sorts them
by sequence number. In and between intervals, the absolute packet num-
bers must be strictly monotonic increasing. If now a new interval takes all
collected packets from the collector immediately, then late packets arriv-
ing out of order would have no chance to be sorted correctly and would
need to be dropped. Therefore this value is the number of milliseconds a
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packet may still stay in the collector after a new interval has started.
This value should be a bit larger than the maximum length of the jitter
buffer of the SIP-client.

MaxLookAheadWindowSize The same like MaxLookaheadWin-
dowTime, but this time for the number of packets that can stay in the
collector buffer. Packets must satisfy both criteria to stay, so this value
can be identical to replaydetectWindow as later packets would be
dropped by the replay window anyway.

MaxSkew The maximum allowed drift between internal clock and recon-
structed packet time from the RTP-timestamps.

MaxPacketLoss The QoS-underun criteria for packet loss: A value of 1.0
means that no packet loss is allowed while a value of 0 allows all packets
to be lost. The default value is 0.95 which results in a maximum of 5%
packet loss before the remaining parts of the call are marked invalid and
the call is terminated.

Policy This describes what to do when a failure occurs:
• DropPacketsIfPossible will silently discard any packets that

raise any kind of error, e.g. to much drift from the internal clock.
• Ignore passes those packets along.
• AbortArchiving stops the process of archiving, but lets the call

continue.
• AbortCall not only stops archiving and any forwarding of packets,

but terminates the call by sending a SIP-BYE request to both parties.
This is the recommended policy for maximum security.

6.6 Instructions for the call verifier

The call verifier shown in Figure 6.6(a) is a tool to open, verify and play
archived conversations. In the upper part of the dialogue, the file to open
must be chosen. Then you can click one of the buttons “Analyse”, “Play” or
“Export”. Analyse will only verify the file and generate statistics. Verification
covers signatures, the hash chain, cohesion and QoS-criteria like packet loss.
The other two buttons will additionally convert the recorded conversation into
the PCM format. Export will ask for a location to export the file in the WAV-
format while ‘Play” will play it over your soundcard. The two listboxes above
the buttons allow to configure this process. You can choose how packet loss
is handled:

Silence Silence is used wherever a packet is missing. As seen in section 3.5,
this yields bad results.
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(a) GUI of the verification utility (b) Results display in the verifica-
tion utility

Fig. 6.6: Results of the verification process

Garbage This experimental setting adds an ugly sinus tone wherever a
packet is missing to maximise the bad effects of packet loss.

Noise This experimental setting adds random noise (with low volume) in-
stead of missing packets. This should yield better results than Silence.

Repeat This is the default value and method of choice for best results with-
out expensive wave reconstructions: Lost packets are replaced with their
preceding packet which therefore is repeated. See section 3.5 for the per-
formance of this method.

The other box “Audio-Mixmode” allows to configure how both channels of
the conversation are reconstructed:

Mix Mixes the audio samples from both channels by adding them.
AOnly Allows to listen to only the isolated speech from A to B.
BOnly Allows to listen to only the isolated speech from B to A.
Stereo Produces stereo WAV-files respectively plays the conversations using

both speakers. One output channel is used for A⇒B, the other one for
B⇒A. This can assist a forensic expert witness in analysing the call be-
cause the resulting WAV-file with retain as much information as possible
by not mixing both channels. It is ideal or further processing or analysing
in audio editors.

The main window of the first tab shows the progress and successes/failures
of the verification process. A green playback symbol means that the program
is processing that task. A green checkmark means that verification was okay
for this entry, while a red cross indicates a failure. Yellow warning-symbols
indicate problems with e.g. signatures. If you double-click the entry, you will
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be able to see and verify the certificate chain or see other problems with the
certificate. In the screenshot, the root certificate for the timestamp-service
was not installed properly. Also the file was not properly closed because the
proxy was terminated during the conversation, which leaves a still checkable
file.
The next tab just shows a log with details about the verification process. More
interesting is the third tab, shown in Figure 6.6(b): It shows detailed informa-
tion what was in the archive file, e.g. caller and calle, which user authenticated
to the timestamp service, the call-start and difference to the timestamp and the
reason for termination of the call.
It also allows to measure the overhead resulting from the signing in relation
to the overhead caused by the RTP-packets alone. For a short call, the RTP-
format added an overhead of 7.5%. On top of that, signatures added 15%.
Note that this is drastically reduced for longer calls as the initial metadata
carries large X509 certificate chains from the archiver and the timestamp ser-
vice.
The remaining tab contains statistics.

6.6.1 Configuration of the call verifier

The call verify also has a config file in the XML-format. It has the name
“CheckFile.exe.config” and is also located in the program directory.
It contains the following entries:

MaxSkew See section 6.5.1.
replaydetectWindow See section 6.5.1.
MaxPacketLoss See section 6.5.1.
MaxMetadataDrift The maximum timespan allowed to pass between

the date and time of the timestamp from the trusted timestamp authority
and the recorded start of the call.

MixMode The default value for packet loss concealment which can and
should be easily changed using the GUI described in the preceding sec-
tion.

PacketLossConcealment The default value for packet loss conceal-
ment which can and should be easily changed using the GUI described in
the preceding section.

6.7 Instructions for the statistics module

The statistics module is actually shared between all three programs: Sip-
ProxyGUI.exe can show live statistics during ongoing conversations and
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CheckFile.exe shows them whenever an archived call is processed. Both
programs can export CSV-files with details about the packets. The separate
Statistics.exe program can import and display these and is a direct
wrapper around the shared module which is contained in the platform specific
GUITools.dll.
In Figure 6.7 the available modes are displayed. To import and export the data

(a) Click the menu button (b) Choose system settings

(c) Configure the first proxy (d) Change asdsa

Fig. 6.7: Screenshots of the statistics module

as CSV-file, please right-click in this statistics subwindow and choose “Load”
or “Save”.
Figure 6.7(a) shows the raw data on which statistics operate: For every RTP-
packet it shows the RTP-sequence number, the reconstructed absolute se-
quence number starting from 0, the exact time when the packet was received
over the network, the RTP-timestamp from the packet, the reconstructed time-
stamp and the drift between the receive time and the reconstructed timestamp.
The colour of the line indicates the direction (A⇒B or B⇒A) of the channel
the packet belongs to. The list can be easily filtered by direction.
Figure 6.7(b) shows how the packet loss can be visualised using blocks: This
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allows for a quick visual overview for patterns of packet loss. One can see
whether packet loss was in bursts or if only single packets were affected. The
blocks are in the colour of the direction of the channel or have the mixed
colour yellow if these sequence number was present in both directions. At
least at the beginning of the conversation one can easily see whether packet
loss in both channels is related. Later the associated times will differ because
of silence suppression: This diagram only displays the sequence numbers and
not associated time. For that the remaining display modes are recommended.
Figure 6.7(c) shows a diagram of packet loss and number of packets over time.
What is shown can be selected by clicking “Count” and “Loss” and selecting
a specific direction or both. The diagrams are drawn using the free ZedGraph
library [42]. Note that you can zoom and export the diagrams with the context
menu displayed after right-clicking.
The X-Axis always shows the time, while the Y-axis shows packet loss be-
tween 0 and 1 and the number of total packets in that timespan. The number
of bars and therefore the granularity can be chosen my modifying the value
“Pieces”.
Finally, Figure 6.7(d) shows a fourier analysis of the packet loss over time.
This was done to find correlations and patterns in packet loss and to detect
whether packet loss results from network outtakes or attacks. So far in the
available network connections packet loss was far too low to find meaningful
values, but further studies are needed.
There is also another statistics tab available, namely “Interval Statistics”. It

Fig. 6.8: Analysis of packet loss by interval

is shown in Figure 6.8. It does not display packet loss by linearly segmenting
the call time in pieces, but by showing a bar for every interval and showing
the packet loss for this interval.
The statistics module has no configuration files.
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Implementation details and classes

This chapter describes how timestamps are created and explains all relevant
classes of the supplied software. Some implementation concepts are ex-
plained in more detail.

7.1 Timestamp Service

As seen in chapter 4, the security of an archived call benefits from a trusted
third party timestamp service. Because commercial timestamp services
charge up to 1$ for every timestamp, are hard to find and entering and ne-
gotating a contract with them would cost an enormous amount of time, it
seemed appropriate to just simply create one myself. It is currently hosted on
a server I operate and is realised as a webservice based on the SOAP-protocol.
The signatures use PKCS#7 signed envelope. The service is protected by a
primitive user/password-based authentication and contains an user database
base on a text file with one username/password-pair per line separated by “:”
in the file “App_Data\Users.txt”. The SOAP interface to use this ser-
vice consists of this simple method:
byte[] GetTimeStamp(byte[] Hash,string user,string password)

If the user and passwords match, the class TimeStamp is used to encode the
hash, the current date/time and the username into a byte-blob. This blob is
signed using PKCS#7 and returned encoded according to the PKCS#7 stan-
dard. The private key is stored together with the timestamp service certifi-
cate in App_Data\cert.p12 using the PKCS#12 format. Additionally,
the root-certificate is stored in App_Data\hett-cacert.pem and also
encoded into the PKCS#7 signature.
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7.2 SIP-Proxy

7.2.1 Helper classes and protocol implementations

Utils This class contains several utility methods, e.g. to encode data
into blobs. It should be noted that through the whole implemen-
tation, datastructures and protocols are usually encoded with the
standard classes BinaryReader and BinaryWriter. These
classes store simple datatypes in a common way, e.g. integers are
simply stored with 4 bytes in big endian format. To guarantee a
simple and operable data format, strings and byte arrays are not
stored with proprietary serialisation frameworks. Instead meth-
ods like WriteByteArray(BinaryWriter wr,byte[]
buf) simply store an integer with the length of the byte array
encoded as 4 bytes, followed by the byte array itself.
For a more efficient implementation, the ASN.1 standard and
DER encoding rules could be used.

RTPPacket This class stores all properties of a RTP-packet, e.g. Sequence-
Number, Timestamp and the byte-array with the payload itself.
It has a constructor that parses a byte-array according to the
RTP-standard and it can also encode its data back into the RTP-
format. Hooks are provided –although currently unused– to im-
plement SRTP with the methods for producing and checking
the authentication-data and encyption and decryption. See sec-
tion 3.3 and RFC 3550 [12] for the format of RTP-packets.

SDPParser This class stores all properties of a SDP-body. It can be initial-
ized with a string containing a SDP-body and can also reencode
its –modified– contents back into a string.
Its public property “Medias” contains a list of MediaDe-
scriptions, one for each defined RTP-stream. Those again
each store in addition to port, media type and encryption key a
dictionary of payload types. This dictionary maps values from
the range 0 − 127 to PayloadFormat-objects where clock,
number of channels and a string with the codec name are stored.
Further this class transparently handles the list of static prede-
fined payloads from RFC 1890 [21]. A helper method to restrict
the number of allowed codec-types is also provided.
See section 3.2 and RFC 2327 [17] for details about SDP.

SIPParser This class contains a SIP-parser, can store a list of SIP-headers,
the SIP-method and destination URI or the response code and
message and also reassembles modified data together with the
body-data back to an SIP-packet.
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Unlike the other parsers, SIPParser does not represent all
parts of a SIP- packet, but mainly header-lines. But it allows easy
replacement of headers or adding and removing headers that can
appear multiple times like VIA or Record-Route. Properties for
From, To, Call-ID and an enumeration for SIP-methods are pro-
vided.
SIPParser can also construct an response for a given request and
create new SIP-packets. See section 3.1 for a description of the
SIP-protocoll.

G711 This class contains static methods to encode and decode µ-law
and a-law encoded voice data into PCM 16 Bit. It implements
the formulas 3.1 and 3.2.

STUNPacket This class contains a minimal STUN-implementation, which
does not carry out the full range of NAT-detection, for symmetric
NATs it will simply not work. It supports detection of the outside
binding of an opened RTP-port, which it returns as external IP-
address and port-number stored in an IPEndPoint-structure.
It also omits support for authentication, because such a server
could not be found. Instead a vast amount of free, unrestricted
STUN-servers is currently available in the wild, e.g from United
Internet, SipGate or Google Talk. See section 3.6 for details
about STUN and the necessity to implement it.

UDPListener This class provides a handy wrapper around asynchronous
UDP-sockets and STUN: It can either listen on a given port-
number or search a free port-range for an unused port. If con-
figured to do so it will even determine the external mapping (IP-
address and port) of this port behind a possible NAT-device.
The socket is used asynchronously and whenever a packet is
received, the public event ReceiveCallback is invoked if
somebody subscribed to it. On the windows operating system
UDPListener does not waste a permanent thread, instead a
thread from the thread pool is used whenever a packet is received.

AudioChunk This class works with short pieces of audio data and can de-
code and encode them in the WAV-format. It can also play sounds
and downsample them to half the sample rate.

FestivalClient This class can communicate by TCP-sockets with the
LISP-based open-source software "‘Festival"’ which provides
speech synthesis to PCM-audio.

MSSpeechAPI This class provides a wrapper around Microsofts Speech
API which is only available on windows.
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Injecting synthesized speech into RTP-streams for signaling to
the user is not yet fully implemented.

ConfigurationSettings This class helps with the configuration set-
tings of the proxy (all settings are stored in a XML-file with the
extension .config) and is able to enumerate the existing net-
work interfaces so that the proxy can bind to the default one.
Alternatively the user can select a specific interface to bind to.

Logger Provides a simplistic common logging-service and a hook for
GUI- or console based interfaces to subscribe to these messages.

7.2.2 The basic SIP-proxy

An important component of the demonstrator is the SIP-proxy which redirects
SIP and RTP-packets to itself for further processing. It is well separated from
the high level applications in section 7.2.3, because already two main applica-
tion for the main technique exists which can be plugged in to the proxy. It is
also possible to easily replace the SIP-proxy with a different implementation,
because the main concepts could be applied to H.232 or IAX as well. In order
to support this, two interfaces ICallClient and ICallProvider (see
Figure 7.1 for a class diagram) are provided, which describe the contracts to
be implemented by the highlevel plugin and by the proxy. This section de-
scribes the implementation of a SIP-proxy, while section 7.2.3 focuses on the
implementation of the self signed archive according to the concept described
in section 2.2.1.
The demonstrator does not implement a full SIP-Proxy as defined in RFC
3261 [11], because it is not concerned with e.g. finding the correct next hop
by querying the DNS-system. It also does not provide call routing or regis-
tration support. Instead it is focused on proxying an existing outgoing proxy
from a SIP-provider.
The main role of the proxy is to intercept SIP-packets and modify embed-
ded IP-addresses to redirect the audio-stream to go through itself for signing
or archiving. It supports multiple parallel calls with multiple SIP-clients/soft
phones to several SIP-providers (original outgoing proxies). SIP-clients must
be reconfigured to use it as outgoing proxy instead of the original outgoing
proxy from their SIP-provider as seen in section 6.4. The main way for a SIP-
client to specify which original outgoing proxy it wanted to contact and what
should happen to the call (i.e. archiving or signing) is by using a different
listening port number of this proxy.

SipProxies This class contains a list of SIPProxy objects, one for each
local proxy that can be setup in a SIP-client. To add a new proxy a
free local UDP-port, the address and port of the original outgoing
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Fig. 7.1: This part of the class-diagram shows the interface be-
tween the proxy-implementation and the highlevel client that
uses a proxy, e.g. for archiving a call. SIPCall is
part of the proxy, implementing the ICallProvider in-
terface. SelfSignedArchiveCallEventsListener
provides a self signed archive for calls and implements
ICallClient. The center of the diagram shows the help-
ing classes like RTPPacket, which is passed between both
implementations or SDPParser, which stores the important
payload mapping. The enumeration TerminationType
describes the reason for call-termination from the Terminate-
method

proxy and a SipCall.CreateCallChannelDelegate
delegate has to be specified. The delegate is a factory that cre-
ates classes that implement ICallClient. This pattern provides a
flexible way of using the basic SIP-proxy with different imple-
mentations of ICallClient in parallel.

SipProxy One object from this class exists for each defined proxy. This
class is derived from UDPListener and handles incoming SIP-
requests from the clients. It does not communicate with the exter-
nal network or the original outgoing SIP-proxies, but instead con-
tains a dictionary of client-IPs which map to SipProcessing-
objects. If a new internal client connects to this proxy-object, it
will create a new entry in the dictionary.
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SipClientConnection One object of this class exists for each used
combination of internal SIP-client-IP and port and defined Sip-
Proxy. Thus perfect separation of the connected SIP-clients is
guaranteed.
This class is derived from UDPListener and listens on an ex-
ternal reachable socket. With this socket it receives SIP-packets
form the external network (e.g. the original outgoing proxy) to
process them. Internal SIP-packets from the SIP-client are for-
warded from SipProxy to this class.
The main task of this class is to trigger the events SipOutgo-
ing and SipIncoming for every incoming and outgoing SIP-
packet. Subscribers to these events can modify or replace the
packet, but can also decide whether the packet should be dropped,
forwarded or answered without involvement of the SIP-client re-
spectively the external SIP-partner. These options are part of the
enumeration SipEventDestination.
As seen in section 3.1.3, SIP has a tendency to not send SIP-
responses to the originator of the packet, but to use VIA-headers.
Furthermore, for follow-up SIP-requests (like BYE or ACK), SIP
always tries to skip the intermediate proxy servers and establish
direct connections. This of course is problematic for the imple-
mentation. Therefore, this class inserts it own IP-address and
port (which is detected with STUN) into the contact-header, the
VIA-header and the Record-Route-header. For responses, these
headers are again removed.

SipProcessing This class derives from SipClientConnection and
provides another service above: It contains a dictionary of calls
which maps Call-IDs to objects of the class SipCall, which
provides all methods of the ICallProvider interface.

SipCall This class handles calls, forceful termination and RTP redirec-
tion. It also provides a second communication channel using var-
ious methods as described in chapter 5. This is simplified slightly
as this class is instantiated exactly once for every call by Sip-
Processing. Therefore it can have simple member-variables
for From- and To- URIs and at most five sockets: For every di-
rection one for communication with the internet/partner and one
for the SIP-client and an additional one for the separate commu-
nication channel, if a second RTP-stream is used. Otherwise it
can also modify RTP-packets to use a special payload or the ex-
tension field.
SIP-URLs are cached on first encounter of INVITE and checked
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that they remain constant. SDP is also modified whenever it is
sent (e.g. as part of response type 180 for ringing) and checked
that it doesn’t change. Depending on communication method, an
additional payload type or a second RTP-channel is added. Be-
fore an incoming SDP-body is forwarded to the SIP-client, the
additional RTP-stream is removed as well as the k=-line used for
signaling.
A simple state machine consisting of boolean member variables
tracks the state of the call, e.g. if it has been established, if for-
warding of packets needs to be forcefully stopped, etc.

As seen in Figure 7.1, SipCall is an implementation of ICallProvider
and therefore it offers the following services and interface to implementations
of ICallClient like the self signed archive:

DelayInjectTerminate(bool othersidehungup) This meth-
ods is to be used if the ICallClient object returned false for Ter-
minate to delay the actual termination of the call. In this case the call
can continue between the SIP-client and the proxy while the other party
already hung up. This way a final statement could be created using speech
synthesis or a final classification for an long-term archive could be queried
from the user.

AbortCall() This can be called if an incoming call should be rejected,
i.e. this method aborts calls which are still in the creation phase. For SIP
this means to send a SIP-CANCEL-request. This can be used to e.g. reject
all incoming calls that offer signature service where the signature can not
be verified to be valid.

TerminateCall() This terminates a call that has already been estab-
lished. This is used to e.g. terminate a call with insufficient QoS.

DelayInjectOutgoingPaket(RTPPacket paket) and
DelayInjectIncomigPaket(RTPPacket paket) These methods

are to be used together with IncomigPacket and OutgoingPacket
that are called on an ICallClient implementation: If ICallClient
returns false to these methods, the RTP-packets are not forwarded. Using
these two methods here they can later be reinjected. These methods can
also be used to inject speech synthesised communication into the ongoing
call on any side. This can be used to implemented a dialogue with the user
where he confirms signing or enters his PIN.

SendExtraData(byte[] data) Sends a datagram over the additional
communication channel, e.g. signature data. Usually this is an unreliable
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means of transport, i.e. the caller of this methods must implement retrans-
mission.

On the other side, ICallClient implementations have to implement the
following interface, which notifies them of any highlevel events happening in
the call so that they can handle them:

Create(ICallProvider provider,SIPUri from,SIPUri to After SipCall used a
delegate factory to created a new instance of its ICallClient, this is
the first method that is called. Through it ICallClient knows where it
can send commands to and can setup From- and To- URLs.

byte[] Phase1(out bool cancel,out string cancelmessage,SDPParser sdp) If this
side (the SIP-client behind this SIP-proxy) is making a call, this method is
called to determine whether initial signaling should be send. This would
be returned by this method as a byte array. The call can also be rejected
(e.g. if no certificate can be found to be used with this user) and the used
codecs can be restricted by modifying SDP.

Phase2(byte[] data,out bool cancel,out string cancelmessage,SDPParser sdp) If
this side made a call, this method is called after the partner answered. His
signaling is provided in data. If it contains e.g. an invalid signature, the
call can still be canceled at this point by providing cancelmessage.

byte[] Phase1_Answer(byte[] data,out bool cancel, out string cancelmessage,

SDPParser sdp) If the call is incoming, then the highlevel implementation
has only one and not two opportunities to react: The incoming call may
carry signaling data which is then provided in data. It can then reject the
call, continue it or even provide its own signaling answer by returning a
byte array.

TearDownEarly() If the call was not taken or if the caller hung up before the
call started, this method is called (to e.g. clean data structures or delete
files)

Setup(. . .incomingpayloads, . . .outgoingpayloads) This method is called when
the call has successfully started and RTP-redirection is established. The
highlevel class is informed about the final codec mapping, which can e.g.
be stored as metadata along with the archived call.

DTMFEvent(char c) This is called whenever a DTMF-event is encountered.
This currently does not use digital signal processing to detect special fre-
quencies, but relies on the DTMF-packets being transported using SIP-
INFO or a special RTP payload (see RFC 2833 [16]). This can be used to
enter PINs.

ReceiveExtraData(byte[] data) Whenever the partner sends additional data
(e.g. signatures) over the secondary communication channel, this method
is called.
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bool Terminate(TerminationType how) If the call is terminated, this methods is
called. It is possible to delay termination by returning false. The call
can then be continued with the SIP-client to e.g. query the user who this
call should be classified for the long-term archive.

bool OutgoingPacket(RTPPacket paket) and
bool IncomigPacket(RTPPacket paket) These methods are called for every RTP-

packet. The packets can then be processed by the ICallClient, e.g.
collected into intervals. Returning false omits sending of the packets.
Instead DelayInjectIncomigPaket can be used to inject other or
modified packets (like speech dialgoues with the user or announcements
about signature status).

7.2.3 Self signed archive classes

ChunkedFile This class extends normal FileStream based IO-streams
to support a chunked fileformat, so that bytearrays can be stored
as entities and read back in the same form. A normal stream
would not care whether its Write-method was called once with
all the data or multiple times with pieces. This class is necessary
because the whole archive file format is based on the concepts
of intervals. This class also stores a flag for each chunk whether
this is the last chunk. Together with the regular EOF-property
of a stream this enables detection whether the call was properly
ended or interrupted.

Signing This class is a wrapper around PKCS#7 signed envelope signa-
tures and the process of signing data. It can keep track of ad-
ditional certificates that only need to be stored with the first in-
terval. Furthermore it supports the scenario of smartcard readers
where the user has to enter his PIN-number for every operation
(see section 6.1). For this case the class has the option to create
an extra RSA keypair for each file. Then only the first interval is
signed using PKCS#7 and contains also the public key. All fur-
ther intervals are signed using this individual private key. After
the file is closed, the private key is wiped out.

IntervalStatisticData This class is used to pass statistical data
about a complete interval to the statistic module, which
can subscribe to an event to get these from the Self-
SignedArchiveCallEventsListener. This data com-
prises date/time, packet count, packet loss and interval number

MetaDataBlock This class is used to encode and store all metadata for
the first interval of the call as seen in Figure 4.5. This com-
prises URLs for caller and callee, the complete payload mapping,
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date and time of the call and a nonce-value. The latter was used
in [43] to mitigate a specific attack where the attacker submits a
call twice to the archive to weaken its evidentiary value.

MoreChecks The QoS checks mentioned in section 4.9.1 are implemented
in this class, e.g. check for strict monotonic increase of sequence
numbers or the time difference between system time and time
calculated from the timestamp.

Sequencer This class reconstructs absolute sequence numbers, time-
stamps and implements the replay window. This needs to be done
because RTP stores sequence numbers as 16 Bit values starting
with a random number (see section 3.3.2) which can easily over-
flow multiple times during one call. Also further checks need
a real time in milliseconds instead of the sampling-rate specific
RTP-timestamp, which can also wrap around and usually starts
with a random value. In order to disambiguate these values,
packets must be passed in the same order to this class as they
are received over the network, i.e. this class is sensitive to the
order in which the packets are passed. With the first processed
packet the class is initialised. This first packet forms the basis of
all relative values like absolute packet number and timespan into
the call. RTP timestamp and RTP sequence number are stored
as offset values in order to remove the randomness of the initial
values. Wraparounds are addressed with a rollover counter. Ev-
ery new packet is tried first for the current rollover counter, then
for the rollover counter+1 and for the rollover counter-1. The
sequence number of these three that passes the replay window
is accepted. In case of rollover counter+1, the rollover counter
itself is incremented by one. For timestamps no replay detec-
tion is performed, but the most likely value is used, too: Three
different timespans are calculated with three different values for
the rollover counter. The one which has the lowest difference to
the last packet is taken. For gaps larger than 10h this is rejected,
because silence suppression for such a long time disallows dis-
ambiguation.
The replay window itself is realized with the bits of a long inte-
ger: Each bit stands for one packet sequence number, 1 means
that this sequence number was already seen. Bit 0 corespon-
dents to absolute packet sequence number m_absseq_win-
dowsstart. If this variable is incremented, the windows is bit-
shifted to the left accordingly thus creating a “sliding” window.
Per definition, all packets with sequence numbers lower than m_-
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absseq_windowsstart are too late respectively have too
high jitter to be considered. Packets inside the range of the sliding
window are examined in detail whether their bit is set and they
are duplicates. And packets in the other side of the range of the
sliding window will shift the window in their direction until their
corresponding bit is the highest one. This provides an (memory-)
efficient way to detect duplicate packets which would otherwise
allow an attacker to insert audio to be signed that nobody would
normally hear.

RTPPaketPlusSeq This class is used to pass along RTP-packets together
with additional data like receive time, reconstructed absolute se-
quence number and absolute timestamp.

SelfSignedArchiveCallEventsListener This class is the main
class for the self signed archive scenario. It implements ICall-
Client and therefore is instantiated for every call. From the
proxy infrastructure it receives preprocessed highlevel notifica-
tions about the call. In its Setup method which is called af-
ter the successful start of a call, it opens a new file, creates the
data structure for metadata and encodes and signs it into the first
chunk. To do so it uses Signing, ChunkedFile and Meta-
DataBlock.
After that it creates two instances of MoreChecks, Se-
quencer and PacketCollector for each channel, which
are called to process every incoming or outgoing RTP-packet.
After everything is ready and the first interval is signed and writ-
ten to disc, a new thread is started. This thread will wait for
the configured interval length and then do the following for each
channel: The collected packets are retrieved from PacketCol-
lector by calling its Swap method. They are already sorted.
They are then checked for monotony, packet loss and time drift.
If they are okay, the interval data is formed and encoded, cover-
ing also the hash of the preceding interval. This encoded interval
data is then signed using the Signing instance and written to
disc.

7.2.4 Main program

Certificates This class implements an user control to choose a certifi-
cate from the Windows Certificate Store, for which the private
key is present. It enumerates the stored certificates and shows
them in a list box.
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ProxyForm This class contains the complete user interface seen in Fig-
ure 6.1(a). It creates a SipProxies object and adds the four
Sip-Proxies as in Table 6.1. It subscribes to the events that are
provided for GUI-updates. Therefore there is no direct access
of the GUI to the internals of the proxy, all GUI-updates happen
through notifications.

7.3 Statistics module

Blocks This class implements an user control that visualises up to two
BitArray-classes as block-diagram. It also reacts to window-
resize messages accordingly and displays the packet number as
tooltip if the mouse is hovered above one block. To determine
how many blocks per row are displayed, the aspect ratio of the
client area of this control is measured and rounded. The last row
is not completely filled

PaketStatistics This class implements the complete statistics module
for packets. It exposes methods for reset and adding of packet-
statistics by passing instances of RTPPaketPlusSeq, which
contain all needed data like reconstructed time.
It uses ZedGraph [42] and Blocks to draw diagrams. These are
created by determining the duration of all stored packets and di-
viding it by the amount of pieces, which the user can configure.
The packets are then binned into these segments and packet loss
and number of packets are counted. Optionally this data is pro-
cessed with the Fourier-transfomation. Routines to export and
import statistical data as CSV are also implemented here.

IntervalStatistics This class is simpler than PaketStatistics
because it does not need to bin packets into linear segments. In-
stead it simply uses the data that is supplied with the Inter-
valStatisticData class for each interval and plots a bar for
every interval. Routines for CSV export and import of statistical
data for intervals are also implemented here.

7.4 Call Verifier

In principle, the call verifier can verify very long phone calls without in-
creased memory usage. The complete design of the tool processes the files
interval by interval and reassembles and mixes audio using streams. Also
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playback and export are using streams and do not store the whole conversa-
tion in memory at once. This is not trivial to implement as new data for both
channels arrives in bursts: Whenever an interval is decoded, a large amount
of packets are released to be appended to either channels. Figure 7.2 shows
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Fig. 7.2: Architecture and flow chart of voice processing

how the main decoder loop yields packets that are then processed for packet
loss concealment and reconstruction of the channel stream. Depending on the
chosen MixMode, they are then mixed and passed to LivePlay or copied to
a WAV-file using the DeferedAudioOut-class.

WaveLib This namespace contains classes and methods to play PCM au-
dio. The .NET framework only has methods to play sounds that
were loaded completely into memory. Here interop-techniques
are used to access the native Windows multimedia APIs. A sec-
ond thread is used to wait for Windows to notify the application
that a buffer was played and that a new buffer must be provided.

DeferedAudioOut This class is able to encode 16 Bit PCM-audio data
to WAV-files. In contrast to the AudioChunk class, which pro-
cesses small pieces of audio like synthesised speech, this class
can be used to stream audio data to a WAV-file. When con-
structed, it writes a dummy WAV-header to disk which contains
the wrong length-fields. During writing, it counts the amount of
samples. When the file is finally closed, the existing header is
patched to produce a correct WAV-file.

LivePlay This class fulfills the events that WaveLib raises when new
audio data is requested. It is an interface between generic streams
and the audio interface.

BlockStream This class is a simple stream that merges blocks into an
continuous byte stream. It contains a linked list/queue of byte
arrays and will satisfy Read-requests of arbitrary length by tak-
ing the number of blocks needed from the head of the queue and
keeping track of which portion of the current block has already
been read. An method AddBlock allows to add byte-arrays.



68 7 Implementation details and classes

The most recently added block can be accessed with the public
property LastBlock to support the repetition packet loss con-
cealment technique.

MixStream This class is able to mix two streams with PCM-encoded 16
Bit mono audio data into one output stream. The constructor sup-
ports two modes: Stereomix and normal mixing. Normal mixing
simply adds two samples, one from each stream and divides them
by two. This is the classical method to mix two audio channels
into one. The other mode produces a stereo PCM-signal and uses
stream A for the left channel and stream B for the right channel.
To do so, samples from A and B have to be used in turn.
If the Read method is called while either of the input streams for
channel A or B are not able to produce data, then MixStream
will buffer whatever it got from A. It will also return to its caller
the amount of data where it was able to get data from both
streams.

BuildAudio This class converts RTP-packets to PCM-data. It knows
about the payload mapping and calls the appropriate codec. It
demands that packets are handed to it in the correct order. If it
detects gaps according to the timestamp-values, it will perform
one of four methods of packet loss concealment as stated in sec-
tion 6.6 and produce filling audio data for the gaps. The output of
this class is a stream. It uses the G711-class to decode the pay-
load and the BlockStream class to create the actual stream.

ICheckItemList This interface separates GUI and implementation. The
process of decoding and checking signed calls produces not only
packets and a dictionary of metadata, but can also constantly in-
form its caller about progress and results of its steps. This hap-
pens through this class which abstracts the concept of a checklist
of steps as seen in the main windows of the Verifier, e.g. in Fig-
ure 6.1(b).
List items/steps are identified by an internal keyword and have a
clear text for the user. One item can always be selected to be the
active one. Every item contains one of five states: Error, Warn-
ing or Success (displayed with corresponding icons), None (if
not processed yet) or Insignificant (if that item is not anymore
worthy to be shown to the user, e.g. opening the file. If an error
occurs in the beginning, such an item is interesting, but later it
can be removed from the list).
Every step can also be associated with success and failure coun-
ters which are then displayed in parentheses.



7.4 Call Verifier 69

CheckItem This class represents a single item in a check item list.
CheckListe This class is the only actual implementation of ICheck-

ItemList and displays its contents in a window with nice
icons. The current workitem is visualized with a green playback
icon.

Checker This class provides the lowest layer for processing and checking
of archived calls. It processes the first chunk with metadata and
decodes the interval data for each subsequent chunk. It checks
the timestamp, all signatures and certificate chains and the hash-
chain, but leaves actual processing of the interval contents to
classes which inherit from it. It keeps track of the Chunked-
File instance for the open file and the last hash and checks this
with each call to ReadNextBlock. This method returns an
BinaryReader for every interval which can be used to decode
the actual interval data.
This class also maintains a StringDictionary which con-
tains all the results and data shown in Figure 6.6(b). Most values
like timestamp-time, start time, correctly closing of file, number
of chunks, etc. are measured by this class.

Reader This class inherits Checker and decodes the interval data from
its binary format. This contains the metadata for the interval,
the absolute sequence number list and the actual packets. It also
measures signature- and RTP-overhead. Interval data is passed to
the virtual ProcessInterval method.

Reader2 This class inherits Reader and implements the virtual Pro-
cessInterval method. It reconstructs absolute sequence
numbers and timestamps from the RTP-packet using the
Sequencer-class, thus emulating the behavior of the proxy. These
values are then tested using MoreChecks so that a non con-
forming proxy can be detected. In detail it checks the strict
monotony of the absolute sequence numbers, the strict monotony
of timestamps, time drift of the reconstructed timestamps, packet
loss and correctness of the stored interval time.
This class also passes packets along to BuildAudio and
MixStream to provide a continuous audio stream of the whole
conversation, if requested

CheckDialog This class is the main window. It changes the program con-
figuration and calls Reader2 to actually process the file. It also
selects if the generated audio should not be processed at all, writ-
ten to the soundcard or to a WAV-file.
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Outlook

During this work, a vast field of future research- and implementation ideas
related to the presented concepts arose which could not be implemented or
discussed in the available time and space:

• In scenario 2 the signer expresses his explicit will to have the call recorded
by providing signatures. But in for the implemented archive in scenario 2
there are legal requirements that all involved parties have to agree to the
recording which would otherwise be void. A real-world implementation
needs to consider conditions for, and signaling and negotiation of record-
ing of a conversation. The draft standard [44] describes a method by which
“One party may assert either their desire to record or their restriction of the
other party’s recording”. Using these assertions in the archiving architec-
ture in the sense that the proxy evaluates and respects them would be a nice
way to disarm privacy reservations to indiscriminate recording of calls.

• The signaling of the archiving status and reasons for termination of the
archiving or the call should be improved. Using speech synthesis would
be a device independent way which works with every kind of phone. This
could also be used to announce recording of the call to both parties.
To do this, the synthesized speech must be encoded using the correct codec
and mixed in or replace the RTP-stream, ideally with correct sequence-
numbers and timestamps.

• Based on scenario 2, an extended protocol could be created that supports
signatures by both parties or even for conference calls. In this scenario,
every partner needs to poss a certificate and archive the call. As it is favor-
able that both parties have a bit-identical signed recording of the call, the
signatures creation of A and B must be synchronized.
This slight variation provides mutual non-repudiation.

• Instead of having a monolithic program (the implemented proxy) which
records, secures and archives calls, a more modular system can be created
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resulting in a even higher security against compromised components as
shown in figure 8.1.
Here the functionality is split in the two components VSec and Arc, ac-

A B

VSec

Arc

VoIP channel

T2

T1

Fig. 8.1: System-model for a distributed secure archive solution

companied by the two trusted time-sources or timestamp authorities T1
and T2. VSec listens to the communication, secures it with its private key
and requests the initial timestamp. Arc is the long-term archive which e.g.
applies regular timestamps to archived calls like in [45, 46].
The secured call is streamed by VSec to Arc, so that VSec needs a constant
amount of memory not related to the length of the call. While Arc receives
the call, it continuously checks the signatures, quality of service and time-
stamps of the call. Together with checking the trusted timestamp of T1, an
attacker who compromised the component VSec would have only a very
short amount of time of about 1 second to forge the archived call.
This was presented together with an exhaustive security analysis in [43].

• Direct implementation of the signing solution inside an existing SIP-client
implemenation would lead to slightly increased security, because replay-
windows and jitter-buffer need not be modeled in the proxy anymore, but
the real list of packets that made it into the playout-buffer would be the
basis for what is signed.
The disadvantage of this would of course be that this would not be flexible
regarding used SIP-clients anymore.

• The signing-solution should be implemented on mobile phones. The con-
cepts lends itself very well to this because of the tunable, bounded re-
quirements on CPU-power and memory for buffers. But the implementa-
tion could probably suffer from languages like Java and C# which utilise
garbage collectors. If this is really the case on todays devices remains to
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be seen. In any case a mobile device is unlikely to provide enough long-
term storage space for B, so the archived call needs to be transmitted to a
storage-service, ideally under control of B. A third variation mixing both
concepts to avoid transmission of the archived call from B to an archive
can be envisioned.

Signer Cert

PKI

Device

Trusted Sound IO

Trusted Time 
Source

Trusted Terminal
User Signalling

Signature Creation

Natural Speech 
Biometrie

Time

Signature

A B

Trust

TPM functionality
Trusted boot

Remote attestation
Shielded Storage

Fig. 8.2: Block diagram of a highly secure signature terminal based
on trusted computing, see [1]

• The presented technology could be used to fulfill the high security require-
ments for signature terminals. Though difficult in general, the this task
is simplified since only one channel (audio) carries the signed informa-
tion. Methods of trusted computing could be employed to turn a VoIP
capable handset into a trustworthy signature platform. Figure 8.2 shows a
schematic presentation of the envisaged Trusted Voice Signature Terminal.

• The self-signed archive scenario could be the basis for a successful voice-
archiving product in form of an appliance. It currently lacks ways of find-
ing archived calls like a database. Also load-tests have to be carried out
and error handling must be improved. The use of the Linux IPTables-
firewall would allow for building a transparent proxy for calls. This would
result in a plug’n’play device that can record calls without changing the
configuration of every single SIP-client.

• Additional codecs, especially iLBC and Speex must be integrated into the
proxy and the verifier for further experiments regarding packet loss.

• Video conferencing over SIP could be tested with the presented concepts.
A litte extension to store, sign and archive multiple RTP-streams instead
of only one could be included.
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• The used card reader contains a keypad to enter the PIN-number. Methods
should be found to supply the PIN through the proxy software, so that the
DTMF dialpad of a remote phone could be used instead of the dialpad of
the cardreader.
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Glossary

ASN.1 Abstract Syntax Notation One, a joint ISO and ITU-T standard
and flexible notation that describes data structures for represent-
ing, encoding, transmitting, and decoding data.

a-law A standard companding algorithm, used in European digital com-
munications systems to optimize, i.e., modify, the dynamic range
of an analog signal for digitizing.

Codec Abbreviation for Coder-Decoder or compressor/decompressor,
software or a device that encodes or decodes a signal.

DNS Domain name system, a system that stores and associates infor-
mation with domain names, most importantly the IP-address of
the host. It can also store mail exchange servers for each domain
and SIP-proxies for handling SIP-calls to this domain.

DOS-attack Denial-of-service attack, an attack that makes a computer re-
source unavailable to its intended users.

DTMF Dual-tone multifrequency, is used for telephone signaling over
the line in the voice frequency band to the call switching center.
In VoIP-scenarios, an emulation of the telephone keypad with the
keys 0-9#* can be provided without frequency modulation.

G.711 An ITU-T standard for audio companding.
GUI
HMAC Keyed-hash message authentication code, used to verify both the

data integrity and the authenticity of a message with a shared
secret key.

HTTP Hypertext Transfer Protocol, a protocol used to transfer or convey
information on the World Wide Web.

IAX Inter-Asterisk eXchange protocol, used by Asterisk, an open
source PBX server from Digium.

IETF Internet Engineering Task Force, develops and promotes Internet
standards.

iLBC Internet Low Bit Rate Codec, a royalty free narrowband speech
codec, developed by Global IP Sound.

IPSec IP security, is a standard for securing Internet Protocol (IP) com-
munications by encrypting and/or authenticating all IP packets.

ISP Internet service provider, a business or organization that offers
users access to the Internet.
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ITU International Telecommunication Union, an international organi-
zation established to standardize and regulate international radio
and telecommunications.

IV Initialization vector, a block of bits to allow a cipher to produce
a unique stream independent from other streams produced by the
same encryption key.

MIME Multipurpose Internet Mail Extensions, an internet standard for
the format of mail.

MOS Mean Opinion Score, provides a numerical indication of the per-
ceived quality of received media after compression and/or trans-
mission. The MOS is expressed as a single number in the range
1 to 5, where 1 is lowest perceived quality, and 5 is the highest
perceived quality.

µ-law A standard analog signal compression algorithm used in digital
communications systems of the North American and Japanese
digital hierarchies to optimize, i.e., modify, the dynamic range of
an analog signal for digitizing.

NAT Network address translation, the process of network address
translation.

PCM Pulse-code modulation, a digital representation of an analog sig-
nal where the magnitude of the signal is sampled regularly at uni-
form intervals, then quantized to a series of symbols in a binary
code.

PKCS#7 Public Key Cryptography Standards #7, used to sign and/or en-
crypt messages under a PKI.

PKI Public key infrastructure, an arrangement that provides for
trusted third party vetting of, and vouching for, user identities.

QOS Quality of service, the probability of the telecommunication net-
work meeting a given traffic contract. Here mainly concerned
with jitter, delay and especially packet loss.

RTP Real-time Transport Protocol, defines a standardized packet for-
mat for delivering audio and video over the Internet.

SBC Session Border Controller, a device used in some VoIP networks
to exert control over the signaling and media streams involved in
setting up, conducting, and tearing down calls.

SDP Session Description Protocol, used to describe RTP-sessions in-
cluding codecs, parameters and port-numbers.

SIP Session Initiation Protocoll, an IETF standard providing signal-
ing for VoIP technology.

SMIME Secure MIME, a standard for public key encryption and signing
of e-mail encapsulated in MIME.
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SOAP Simple Object Access Protocol, a protocol for exchanging XML-
based messages over a computer network, normally using HTTP.
SOAP is the foundation layer for Web services.

Speex A free software speech codec that claims to be unencumbered by
patent restrictions, licensed under the BSD License.

SPIM Messaging SPAM, a type of SPAM where the target is instant
messaging services.

SPIT Spam over Internet Telephony, an as-yet-nonexistent problem.
SRTP Secure RTP, a variant of RTP that allows replay detection, sym-

metric encryption and HMAC-based integrity protection and au-
thentification.

STUN Simple Traversal of UDP over NATs, a network protocol allow-
ing clients behind NAT to find out its public address and other
information about the NAT.

TLS Transport Layer Security, a successor to Secure Socket Layer
(SSL), providing endpoint authentication and communications
privacy over the Internet using cryptography.

URL Uniform Resource Locator, is a string which refers to a resource
on the Internet by its location.

VoIP Voice over IP, is the routing of voice conversations over the In-
ternet or through any other IP-based network.

VPN Virtual private network, often used to provide confidentiality, in-
tegrity and authenticy for network traffic. E.g. based on IPSec.

WAV Waveform audio format, a Microsoft and IBM audio file format
standard for storing audio on PCs.
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